

Código: 16385

Centro: Facultad de Ciencias

Titulación: Física Nivel: Grado

Tipo: Formación básica N° de créditos: 6

ASIGNATURA / COURSE TITLE

Fundamentos de Física I / Fundamentals of Physics I

1.1. Código / Course number

16385

1.2. Materia / Content area

Física / Physics

1.3. Tipo / Course type

Formación básica / Compulsory subject

1.4. Nivel / Course level

Grado / Bachelor (first cycle)

1.5. Curso / Year

1° / 1st

1.6. Semestre / Semester

Primer semestre (Grado en Física / First semester (Physics Bachelor)
Segundo semestre (Grado en Matemáticas)/ Second semester (Mathematics Bachelor)

1.7. Número de créditos / Credit allotment

6 créditos ECTS / 6 ECTS credits

1.8. Requisitos previos / Prerequisites

Es recomendable tener conocimientos de Física a nivel de segundo curso de Bachillerato / It is advisable to have a background in Physics at a level of second year of Secondary Shool

Código: 16385

Centro: Facultad de Ciencias

Titulación: Física Nivel: Grado

Tipo: Formación básica N° de créditos: 6

1.9. Requisitos mínimos de asistencia a las sesiones presenciales / Minimum attendance requirement

Es obligatoria la asistencia de un mínimo de un 75% a las clases magistrales, y un mismo porcentaje a clases de problemas / A minimum of a 75% of attendance to lectures is mandatory, for both theory and practice.

1.10. Datos del equipo docente / Faculty data

Grupo 511 (Grado en Física)

Docente(s) / Lecturer(s): Enrique García Michel (coordinador)

Departamento de Física de la Materia Condensada/ Department of Physics of

Condensed Matter

Facultad de Ciencias/ Faculty of Sciences

Despacho -613 Módulo 03/ Office 613- Module 03

Teléfono / Phone: +34 91 497 4759

Correo electrónico/Email: enrique.garcia.michel@uam.es

Página web/Website:

Horario de atención al alumnado: Viernes, de 9 a 10 horas/Office hours: Fridays from 9 to 10 hours.

Docente(s) / Lecturer(s): José Emilio Prieto de Castro

Departamento de Física de la Materia Condensada/ Department of Physics of Condensed Matter

Facultad de Ciencias/ Faculty of Sciences Despacho 14 en CMAM/ Office at CMAM Teléfono / Phone: +34 91 497 3076

Correo electrónico/Email: joseemilio.prieto@uam.es

Página web/Website:

Horario de atención al alumnado: Viernes, de 10 a 11 horas/Office hours: Fridays from 10 to 11 hours.

Docente(s) / Lecturer(s): Miriam Jaafar Ruiz-Castellanos

Departamento de Física de la Materia Condensada/ Department of Physics of Condensed Matter

Facultad de Ciencias/ Faculty of Sciences

Despacho -205 Módulo 03/ Office 205- Module 03

Teléfono / Phone: +34 91 497 4754

Correo electrónico/Email: miriam.jaafar@uam.es

Página web/Website:

Horario de atención al alumnado: Viernes, de 10 a 11 horas/Office hours: Fridays

from 10 to 11 hours.

Código: 16385

Centro: Facultad de Ciencias

Titulación: Física Nivel: Grado

Tipo: Formación básica N° de créditos: 6

Docente(s) / Lecturer(s): Félix Ynduráin Muñoz

Departamento de Física de la Materia Condensada/ Department of Physics of Condensed Matter

Facultad de Ciencias/ Faculty of Sciences

Despacho -605 Módulo 03/ Office 605- Module 03

Teléfono / Phone: +34 91 497 4736

Correo electrónico/Email: felix.yndurain@uam.es

Página web/Website:

Horario de atención al alumnado: Viernes, de 10 a 11 horas/Office hours: Fridays

from 10 to 11 hours.

Grupo 516 (Grado en Física)

Docente(s) / Lecturer(s): Ginés Lifante Pedrola

Departamento de Física de Materiales/ Department of Physics of Materials

Facultad de Ciencias/ Faculty of Sciences

Despacho 604 - Módulo 04 / Office 604 - Module 04

Teléfono / Phone: +34 91 497 4783

Correo electrónico/Email: gines.lifante@uam.es

Página web/Website:

Horario de atención al alumnado: Viernes, de 12 a 13 horas / Office hours: Fridays,

from 12 to 13 hours

Docente(s) / Lecturer(s): David Bravo Roldán

Departamento de Física de Materiales/ Department of Physics of Materials

Facultad de Ciencias/ Faculty of Sciences

Despacho 605 - Módulo 04 / Office 605 - Module 04

Teléfono / Phone: +34 91 497 3816

Correo electrónico/Email: david.bravo@uam.es

Página web/Website:

Horario de atención al alumnado: Viernes, de 12 a 13 horas / Office hours: Fridays,

from 12 to 13 hours

Docente(s) / Lecturer(s): Íñigo Aguirre de Cárcer

Departamento de Física de Materiales/ Department of Physics of Materials

Facultad de Ciencias/ Faculty of Sciences

Despacho 612 - Módulo 04 / Office 612 - Module 04

Teléfono / Phone: +34 91 497 6888

Correo electrónico/Email: inigo.aguirre@uam.es

Página web/Website:

Horario de atención al alumnado: Viernes, de 12 a 13 horas / Office hours: Fridays,

from 12 to 13 hours

Código: 16385

Centro: Facultad de Ciencias

Titulación: Física Nivel: Grado

Tipo: Formación básica N° de créditos: 6

Grupos 721 y 726 (Grado en Matemáticas)

Docente(s) / Lecturer(s): Julio Gómez Herrero

Departamento de Física de la Materia Condensada/ Department of Physics of

Condensed Matter

Facultad de Ciencias/ Faculty of Sciences

Despacho -609 Módulo 03/ Office 609- Module 03

Teléfono / Phone: +34 91 497 4754

Correo electrónico/Email: julio.gomez@uam.es

Página web/Website:

Horario de atención al alumnado: Martes, de 11:30 a 13:30 horas/Office hours:

Tuesdays from 11:30 to 13:30 hours.

Docente(s) / Lecturer(s): David Martínez Martín

Departamento de Física de la Materia Condensada/ Department of Physics of Condensed Matter

Facultad de Ciencias/ Faculty of Sciences

Despacho -205 Módulo 03/ Office 205- Module 03

Teléfono / Phone: +34 91 497 4754

Correo electrónico/Email: david.martinez@uam.es

Página web/Website:

Horario de atención al alumnado: Jueves, de 11:30 a 13:30 horas/Office hours:

Thursdays from 11:30 to 13:30 hours.

1.11. Objetivos del curso / Course objectives

Competencias Específicas / Specific Competences

Conceptuales / Knowledge

- Tener un conocimiento claro de las magnitudes físicas fundamentales y derivadas, los sistemas de unidades en que se miden y la equivalencia entre ellos.
- Conocer los principios de la mecánica newtoniana, del trabajo y la energía, y las relaciones que se derivan de ellos, aplicándolos al movimiento de una partícula y de un sistema de partículas, incluyendo el movimiento rotacional y oscilatorio.
- Conocer los principios del movimiento ondulatorio, describiendo sus características esenciales y el principio de superposición.
- Conocer los fundamentos de la mecánica de fluidos.
- Conocer las magnitudes que describen un sistema termodinámico. Conocer el primer y segundo principios de la Termodinámica, y su aplicación en procesos térmicos.

Procedimentales / Skills

 Disponer de los fundamentos matemáticos mínimos que permitan la descripción de fenómenos físicos.

Código: 16385

Centro: Facultad de Ciencias

Titulación: Física Nivel: Grado

Tipo: Formación básica N° de créditos: 6

- Poder explicar de manera comprensible los fenómenos y procesos básicos de la Mecánica Newtoniana.
- Disponer de los fundamentos teóricos mínimos que permitan la descripción y comprensión de la cinemática de una partícula y de un sistema de partículas.
- Disponer de los fundamentos teóricos mínimos que permitan la comprensión de la dinámica de una y de un sistema de partículas.
- Disponer de los fundamentos teóricos mínimos que permitan la comprensión y descripción de la estática y dinámica de fluidos.
- Disponer de los fundamentos teóricos mínimos que permitan la comprensión y descripción de procesos térmicos.
- Utilizar con soltura las estrategias necesarias para resolver problemas, seleccionando y aplicando los conceptos físicos necesarios.

1.12. Contenidos del programa / Course contents

PROGRAMA SINTÉTICO

TEMA I: Magnitudes y unidades. Cálculo vectorial.

TEMA II: Cinemática.

TEMA III: Dinámica de una partícula. TEMA IV: Trabajo, energía y gravitación.

TEMA V: Dinámica de un sistema de partículas.

TEMA VI: Movimiento ondulatorio. TEMA VII: Mecánica de fluidos. TEMA VIII: Termodinámica. PROGRAMA DETALLADO

TEMA I: MAGNITUDES y UNIDADES. CÁLCULO VECTORIAL.

Contenidos Teóricos y Prácticos

Magnitudes físicas y dimensiones. Sistemas de unidades. Cálculo vectorial.

Objetivos y Capacidades a Desarrollar

- Conocer el significado de las dimensiones de una magnitud, así como las magnitudes y unidades fundamentales y su relación con las magnitudes y unidades derivadas.
- Conocer y diferenciar las magnitudes escalares y vectoriales.
- Conocer el cálculo vectorial necesario para la descripción de fenómenos físicos sencillos.

TEMA II: CINEMÁTICA.

Contenidos Teóricos y Prácticos

Sistemas de referencia. Posición, velocidad y aceleración. Descripción del movimiento de una partícula en una dimensión. Descripción del movimiento de una partícula en dos y tres dimensiones (movimiento circular y movimiento parabólico).

Código: 16385

Centro: Facultad de Ciencias

Titulación: Física Nivel: Grado

Tipo: Formación básica N° de créditos: 6

Objetivos y Capacidades a Desarrollar

- Conocer las definiciones de desplazamiento, velocidad y aceleración, y la relación entre ellas.
- Ser capaz de describir el movimiento de una partícula en una dimensión.
- Ser capaz de describir el movimiento de una partícula en dos y tres dimensiones utilizando cálculo vectorial.
- Ser capaz de utilizar los conceptos de velocidad y aceleración para la resolución de problemas.

TEMA III: DINÁMICA DE UNA PARTÍCULA

Contenidos Teóricos y Prácticos

Tipos de interacciones. Ley de la inercia (1ª Ley de Newton) y definición general de fuerza. Ley fundamental de la Mecánica Newtoniana (2ª Ley de Newton). Cantidad de movimiento e Impulso. Ley de acción y reacción (3ª Ley de Newton). Tipos de fuerzas. Momento de una fuerza. Momento angular.

Objetivos y Capacidades a Desarrollar

- Comprender el concepto de fuerza.
- Comprender el significado de las leyes de Newton así como sus implicaciones en diferentes circunstancias.
- Conocer las definiciones de los momento lineal, impulso, momento de una fuerza y momento angular.
- Ser capaz de identificar los tipos de fuerzas responsables de los distintos movimientos.
- Ser capaz de aplicar las leyes de Newton para la resolución de problemas.

TEMA IV: TRABAJO, ENERGÍA Y GRAVITACIÓN

Contenidos Teóricos y Prácticos

Trabajo. Potencia. Energía Cinética. Fuerzas conservativas y no conservativas. Energía Potencial. Conservación de la energía mecánica. Fuerzas centrales. Interacción gravitatoria.

Objetivos y Capacidades a Desarrollar

- Conocer las definiciones de trabajo, potencia, energía cinética y energía potencial.
- Saber aplicar la ley de conservación de la energía en la resolución de problemas.
- Saber explicar cualitativamente el movimiento de partículas a partir de las curvas de energía potencial.
- Conocer la definición de fuerza central, y su implicación en el movimiento de partículas sometidas a ella.
- Saber aplicar las definiciones de campo y potencial gravitatorio para resolver problemas de cuerpos sometidos a campos gravitatorios.

Código: 16385

Centro: Facultad de Ciencias

Titulación: Física Nivel: Grado

Tipo: Formación básica N° de créditos: 6

TEMA V: DINÁMICA DE UN SISTEMA DE PARTÍCULAS

Contenidos Teóricos y Prácticos

Sistema de partículas. Centro de masas. Conservación del momento lineal. Colisiones. Rotación. Momento de Inercia. Conservación del momento angular. Sólido rígido: equilibrio del sólido rígido.

Objetivos y Capacidades a Desarrollar

- Saber calcular el centro de masas de un sistema y conocer sus implicaciones en la dinámica de los sistemas de partículas.
- Conocer la extensión de las magnitudes estudiadas en la dinámica de una partícula a los sistemas de partículas.
- Saber aplicar las leyes de la conservación de la energía y del momento lineal a los sistemas de partículas.
- Saber aplicar las leyes de la conservación del momento angular al sólido rígido.
- Saber resolver problemas de equilibrio del sólido rígido.

TEMA VI: MOVIMIENTO ONDULATORIO

Contenidos Teóricos y Prácticos

Tipos de oscilaciones. Movimiento Armónico Simple (MAS). Movimiento ondulatorio. Superposición de ondas. Ondas estacionarias. Tipos de ondas.

Objetivos y Capacidades a Desarrollar

- Conocer con detalle las características del movimiento armónico simple.
- Conocer las características del movimiento ondulatorio.
- Saber interpretar el fenómeno de ondas estacionarias como superposición de ondas.
- Saber distinguir entre ondas transversales y ondas longitudinales.

TEMA VII: MECÁNICA DE FLUIDOS

Contenidos Teóricos y Prácticos

Densidad y presión de un fluido. Principio de Pascal. Principio de Arquímedes. Ecuación de continuidad. Ecuación de Bernouilli. Viscosidad de un fluido. Flujo viscoso y flujo laminar.

Objetivos y Capacidades a Desarrollar

- Conocer las magnitudes que caracterizan un fluido ideal.
- Disponer de los fundamentos teóricos que describen la estática y la dinámica de fluidos ideales.
- Conocer la descripción de un fluido real en base a la viscosidad.
- Saber resolver problemas de fluidos ideales y reales.

Código: 16385

Centro: Facultad de Ciencias

Titulación: Física Nivel: Grado

Tipo: Formación básica N° de créditos: 6

TEMA VIII: TERMODINÁMICA

Contenidos Teóricos y Prácticos

Temperatura y calor. Transmisión de calor. Introducción a la Física Estadística: Teoría Cinética. Calor y trabajo en termodinámica. Energía interna. Primera ley de la Termodinámica. Entropía. Segunda ley de la Termodinámica. Procesos térmicos.

Objetivos y Capacidades a Desarrollar

- Conocer los conceptos de temperatura, calor y trabajo.
- Conocer las leyes de transmisión de calor según sus tipos.
- Conocer y saber interpretar la primera ley de la Termodinámica como una ley de conservación.
- Comprender el concepto de entropía, y saber formular la segunda ley de la Termodinámica.
- Saber resolver problemas que involucren procesos térmicos.

1.13. Referencias de consulta / Course bibliography

- a) TIPLER, P.A. y MOSCA, G., *Física para la Ciencia y la Tecnología*, 5ª edición, Ed. Reverté, 2005.
- b) ALONSO, M. y FINN, E.J., Física, Ed. Addison Wesley Iberoamericana, 1995.
- c) SERWAY, R.A. y JEWETT Jr., J.W., Física, 3ª edición, Ed. Thomson, 2003.
- d) SEARS, F.W., ed, *Física Universitaria*, 11^a edición, Ed. Pearson-Addison Wesley, 11^a edición 2004.
- e) OHANIAN, H.C. y MARKERT, J.T, Física para Ingeniería y Ciencias, McGraw Hill, 2009.

Página Web de la Asignatura:

http://portal.uam.es/portal/page/profesor/epd2_asignaturas/asig16385

2. Métodos docentes / Teaching methodology

La enseñanza y el aprendizaje de la asignatura se estructurarán por medio de clases teóricas y clases prácticas de resolución de problemas.

Actividades Presenciales

- Clases teóricas

En las clases teóricas el profesor explicará los conceptos esenciales contenidos en el programa de la asignatura, invitando a los alumnos a participar con preguntas. En las clases teóricas se sugerirán también los

Código: 16385

Centro: Facultad de Ciencias

Titulación: Física Nivel: Grado

Tipo: Formación básica N° de créditos: 6

métodos de resolución de problemas, así como algunas de las directrices a seguir, en su caso, en los trabajos de los seminarios.

Clases prácticas

Las clases prácticas estarán orientadas hacia la resolución de problemas específicos derivados de la aplicación del contenido de las clases teóricas. Los problemas se propondrán previamente a los alumnos para que intenten resolverlos con anterioridad. En la clase práctica, los alumnos podrán resolver y explicar los problemas a los demás compañeros.

- Controles Periódicos

Periódicamente, se efectuarán controles escritos, a modo de exámenes breves, que formarán parte de la evaluación de la asignatura y consistirán en la resolución de uno o varios problemas y/o alguna cuestión teórica.

Actividades Dirigidas

- Trabajos individuales o en grupo

Como parte de las clases prácticas, se podrán proponer trabajos a los estudiantes, que estos realizarán individualmente o en grupo. Los estudiantes deberán desarrollar un tema a partir de referencias bibliográficas. Los temas propuestos serán siempre de profundización y/o ampliación de los conceptos básicos de las clases teóricas y se expondrán, a modo de seminario, ante los compañeros.

- Tutorías

Durante las tutorías, se atenderán las dudas de los alumnos.

3. Tiempo de trabajo del estudiante / **Student** workload

		N° de horas	Porcentaje	
Presencial	Clases teóricas	30 h (20%)	- 50% = 75 horas	
	Clases prácticas / Seminarios	30 h (20%)		
	Realización de controles periódicos y exámenes cuatrimestrales	7,5 h (5%)		
	Tutorías y Plan de Acción Tutorial	7,5 h (5%)		
No presencial	Estudio semanal y preparación de controles y exámenes	75h (50%) (5 h.x15 semanas)	50% = 75 horas	
Carga total c	le horas de trabajo: 25 horas x 6 ECTS	150 h		

Código: 16385

Centro: Facultad de Ciencias

Titulación: Física Nivel: Grado

Tipo: Formación básica N° de créditos: 6

4. Métodos de evaluación y porcentaje en la calificación final / Evaluation procedures and weight of components in the final grade

• Descripción detallada del procedimiento para la evaluación.

Para superar la asignatura, el alumno debe demostrar que:

- Comprende los principales conceptos de la Física y su articulación en leyes, teoría y modelos.
- Utiliza con soltura las estrategias necesarias para resolver problemas, seleccionando y aplicando los conceptos físicos necesarios.
- Conoce las herramientas matemáticas necesarias para resolver e interpretar correctamente los resultados de un determinado supuesto físico y saber analizar con rigor las ecuaciones matemáticas mediante las cuales se expresan las diversas leyes físicas.
- Expresa en las unidades correctas las diversas magnitudes que se encuentran en la Física.

Todo lo anterior será evaluado a través de la resolución continuada de los problemas planteados o trabajos propuestos en las clases prácticas, tanto oralmente como por escrito, y de pruebas objetivas escritas.

Porcentaje en la calificación final

La calificación final para superar la asignatura debe ser de 5 sobre 10.

El porcentaje de cada uno de los apartados que forman parte de la calificación, tal como se indicó en el punto anterior, será el siguiente:

- Actividades y pruebas periódicas objetivas: 70%
- Trabajos individuales, entrega de problemas resueltos, resolución oral de problemas en clase: 30%

Convocatoria extraordinaria:

En caso de que el alumno no haya aprobado la asignatura podrá presentarse a la convocatoria extraordinaria. Esta constará de dos pruebas:

- Examen teórico-práctico en el que se evaluará el conocimiento de todos los Temas que componen la asignatura, y que representa el 70% de la nota.
- Las actividades evaluables relacionadas con entregas periódicas de problemas, participación en clase y trabajos no serán re-evaluables en la convocatoria extraordinaria, y se mantendrá por tanto la calificación obtenida en la evaluación ordinaria.

Código: 16385

Centro: Facultad de Ciencias

Titulación: Física Nivel: Grado

Tipo: Formación básica Nº de créditos: 6

El estudiante que haya participado en menos de un 10% de las actividades de evaluación, será calificado en la convocatoria ordinaria como "No evaluado".

5. Cronograma* / Course calendar

Tema	Tipología	Horas Presenciales Contact hours	Horas no presenciales Independent study time
I	Clases Teóricas	2	2
	Clases Prácticas / Seminarios	2	2
II	Clases Teóricas	4	4
	Clases Prácticas / Seminarios	4	4
III	Clases Teóricas	4	4
	Clases Prácticas / Seminarios	4	4
IV	Clases Teóricas	4	4
	Clases Prácticas / Seminarios	4	4
V	Clases Teóricas	5	5
	Clases Prácticas / Seminarios	5	5
VI	Clases Teóricas	4	4
	Clases Prácticas / Seminarios	4	4
VII	Clases Teóricas	3	3
	Clases Prácticas / Seminarios	3	3
VIII	Clases Teóricas	4	4
	Clases Prácticas / Seminarios	4	4

^{*}Este cronograma tiene carácter orientativo.