
Raman Spectroscopy of Quasi-two-dimensional materials

Sanja Djurdjić Mijin^{1,2}

¹Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain

²Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia

Quasi-two-dimensional materials, known for their easy exfoliation to a monolayer and unique optical and transport properties are promising candidates for nanospinctronics and nanoelectronics. Experimental confirmation of magnetic ordering in these complex systems, which persists down to a monolayer, did not only widen up the area of their potential application, but also opened up a completely new experimental field in condensed matter physics - low dimensional magnetism. As previously proposed theories forbid magnetic ordering in 2D systems, it is no surprise that magnetic quasi-2D materials have only recently become an area of extensive study. Additionally, studies done on the transition metal dichalcogenides show that these materials host a very intriguing quantum phenomenon - charge density waves (CDW), which unexpectedly co-exist with superconductivity (SC). The mechanism behind the formation of CDW and its coexistance with SC still remain unexplained and are widely studied. In this talk I will present results of Raman Spectroscopy studies of the three magnetic Quasi-2D materials ferromagnetic Crl₃ and Vl₃, ferrimagnetic Mn₃Si₂Te₆. The main focus will be put on the lattice properties and various phase transitions in these compounds. I will also present study of charge density wave formation in 1T-TaS2, demonstrating that the Raman Spectroscopy can be used as a poweful tool in distinguishing the CDW and Mott gap, and for the determination of the size of the Mott gap.

Figure. Evolution of CDW and Mott gaps in 1T-TaS₂. (a-c) Squared Raman vertices and Fermi surface for the indicated symmetries in the normal phase above T_{IC}. (d-g) Low energy Raman spectra for A_{1g} symmetry (blue) and E_g symmetries (red) at temperatures as indicated. (h) High energy spectra at 4 K. Vertical dashed lines and colored bars indicate the approximate size and error bar of the Mott gap for the correspondingly colored spectrum. (i) Temperature dependence of the Mott gap $\Delta_{\mu}(\mu = A_{1g}; E_g)$