INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir UNA Y SOLO UNA de ellas y resolver los cuatro ejercicios de que consta. No se permite el uso de calculadoras con capacidad de representación gráfica.

PUNTUACIÓN: La calificación máxima de cada ejercicio se indica en el encabezamiento del mismo.

Tiempo: 90 minutos.

OPCIÓN A

Ejercicio 1. (Puntuación máxima: 2 puntos.) Calcular las edades actuales de una madre y sus dos hijos sabiendo que hace 14 años la edad de la madre era 5 veces la suma de las edades de los hijos en aquel momento, que dentro de 10 años la edad de la madre será la suma de las edades que los hijos tendrán en ese momento y que cuando el hijo mayor tenga la edad actual de la madre, el hijo menor tendrá 42 años.

Ejercicio 2. (Puntuación máxima: 2 puntos.) Calcular el rango de la matriz A según los diferentes valores del parámetro real a:

\[A = \begin{bmatrix} 2 & 0 & a & 2 \\ -1 & 0 & -1 & 3 \\ 5 & a + 4 & -4 & -3 \end{bmatrix} \]

Ejercicio 3. (Puntuación máxima: 3 puntos.) Se consideran las cónicas \(C_1 \) y \(C_2 \) cuyas ecuaciones cartesianas son:

\[C_1 : 9x^2 + 16y^2 = 144 \quad ; \quad C_2 : 9x^2 - 16y^2 = 144. \]

a) (2 puntos) Identificar \(C_1 \) y \(C_2 \). Especificar, para cada una de ellas, sus elementos característicos: vértices, focos, excentricidad y asintotas (si existen).

b) (1 punto) Hallar una ecuación cartesiana de la parábola de eje horizontal, abierta hacia la derecha y que pasa por tres de los vértices de la cónica \(C_1 \).

Ejercicio 4. (Puntuación máxima: 3 puntos.) Se considera la función real de variable real definida por:

\[f(x) = \frac{1}{x^2 + 3}. \]

a) (1 punto) Hallar la ecuación cartesiana de la recta tangente en el punto de inflexión de abscisa positiva de la gráfica de \(f \).

b) (2 puntos) Calcular el área del recinto plano acotado limitado por la gráfica de \(f \), la recta anterior y el eje \(x = 0 \).
Ejercicio 1. (Puntuación máxima: 2 puntos.) Hallar una ecuación cartesiana del plano que contiene a la recta r:

$$x = 1 + t; \quad y = -1 + 2t; \quad z = t$$
y es perpendicular al plano π:

$$2x + y - z = 2.$$

Ejercicio 2. (Puntuación máxima: 2 puntos.) Los puntos $A(1,1,1), B(2,2,2), C(1,3,3)$ son tres vértices consecutivos de un paralelogramo.

Se pide:

a) (1 punto) Hallar las coordenadas del cuarto vértice D y calcular el área de dicho paralelogramo.

b) (1 punto) Clasificar el paralelogramo por sus lados y por sus ángulos.

Ejercicio 3.- (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real a:

$$\begin{cases}
 x - y = 2 \\
 ax + y + 2z = 0 \\
 x - y + ax = 1
\end{cases}$$

Se pide:

a) (1,5 puntos) Discutir el sistema según los diferentes valores del parámetro a.

b) (0,5 puntos) Resolver el sistema para $a = -1$.

c) (1 punto) Resolver el sistema para $a = 2$.

Ejercicio 4. (Puntuación máxima: 3 puntos.) Se considera la función:

$$f(x) = \begin{cases}
 \frac{x^2 + 3x + 1}{x} \quad \text{si} \quad x \geq -1 \\
 \frac{2x}{x - 1} \quad \text{si} \quad x < -1.
\end{cases}$$

Se pide:

a) (0,5 puntos) Estudiar el dominio y la continuidad de f.

b) (1,5 puntos) Hallar las asintotas de la gráfica de f.

c) (1 punto) Calcular el área del recinto plano acotado limitado por la gráfica de f y las rectas $y = 0$, $x = 1$, $x = 2$.