LOCAL SMOOTHING FOR THE BACKSCATTERING TRANSFORM

Ingrid Beltiță
Institute of Mathematics "Simion Stoilow" of the Romanian Academy

CONTENTS

1. Construction of the backscattering transform from the scattering amplitude.
2. Power series expansion for the backscattering transform.
3. Special fundamental solutions of the ultrahyperbolic operator.
4. Local smoothing estimates for the backscattering transform.
5. Further results on global estimates.

The course presents results obtained by Anders Melin (Lund University) and the lecturer. We consider the inverse backscattering problem for Schrödinger operators $H_v = -\Delta + v$, $v \in L^\infty_{\text{comp}}(\mathbb{R}^n; \mathbb{R})$, in odd dimensions $n \geq 3$. The backscattering transform Bv of the potential v is, up to a smooth function, the real part of the inverse Fourier transform of the backscattering part of the scattering matrix. The mapping $L^\infty_{\text{comp}}(\mathbb{R}^n) \ni v \mapsto Bv \in \mathcal{D}'(\mathbb{R}^n)$ is entire analytic, and we write

$$Bv = \sum_1^\infty B_N v,$$

where $B_N v$ is the Nth order term in the power series expansion of B at $v = 0$. Here $B_1 v = v$.

We shall give estimates for $B_N v$ in Sobolev spaces $H^{(s)}(\mathbb{R}^n)$ and show that $v \mapsto Bv$ extends to an entire analytic mapping on $H^{(s)}(\mathbb{R}^n) \cap \mathcal{E}'(\mathbb{R}^n)$ with values in $H^{(s+\alpha)}_{\text{comp}}(\mathbb{R}^n)$, when $s \geq (n - 3)/2$. We show moreover that, when $s > (n - 3)/2$ and $v \in H^{(s)}(\mathbb{R}^n) \cap \mathcal{E}'(\mathbb{R}^n)$, the regularity of $B_N v$ increases with N and $v - Bv$ is locally of class $H^{(s+\alpha)}(\mathbb{R}^n)$, where $0 \leq \alpha < 1$, $a < s - (n - 3)/2$. Finally, further results on global estimates will be briefly presented.

We conclude this abstract with a few references the course is based upon.

REFERENCES