Flow monotonicity and Strichartz inequalities

Jonathan Bennett

U. Birmingham

4th June 2014
Abstract idea: Given a functional $\mathcal{F}(f)$, it is often of interest to identify flows f_t (with $f_0 = f$ say) for which

$$t \mapsto \mathcal{F}(f_t)$$

is monotone.
Abstract idea: Given a functional $\mathcal{F}(f)$, it is often of interest to identify flows f_t (with $f_0 = f$ say) for which

$$t \mapsto \mathcal{F}(f_t)$$

is monotone. (Equally, given a flow, it is often of interest to identify such functionals...
Abstract idea: Given a functional $\mathcal{F}(f)$, it is often of interest to identify flows f_t (with $f_0 = f$ say) for which
\[t \mapsto \mathcal{F}(f_t) \]
is monotone. (Equally, given a flow, it is often of interest to identify such functionals - these are sometimes called Lyapunov functionals for the flow.)
Abstract idea: Given a functional $F(f)$, it is often of interest to identify flows f_t (with $f_0 = f$ say) for which

$$t \mapsto F(f_t)$$

is monotone. (Equally, given a flow, it is often of interest to identify such functionals - these are sometimes called Lyapunov functionals for the flow.)

Example: Suppose u solves the heat equation $\partial_t u = \Delta u$ on \mathbb{R}^d (say) and $B : \mathbb{R} \to \mathbb{R}$.
Abstract idea: Given a functional $F(f)$, it is often of interest to identify flows f_t (with $f_0 = f$ say) for which

$$t \mapsto F(f_t)$$

is monotone. (Equally, given a flow, it is often of interest to identify such functionals - these are sometimes called Lyapunov functionals for the flow.)

Example: Suppose u solves the heat equation $\partial_t u = \Delta u$ on \mathbb{R}^d (say) and $B : \mathbb{R} \to \mathbb{R}$. If

$$F(f) = \int_{\mathbb{R}^d} B(f(x)) dx,$$

then

$$\frac{d}{dt} F(u(t, \cdot)) = \frac{d}{dt} \int_{\mathbb{R}^d} B(u(t, x)) dx = \int_{\mathbb{R}^d} B'(u) \Delta u = - \int_{\mathbb{R}^d} B''(u) |\nabla u|^2,$$
Abstract idea: Given a functional $\mathcal{F}(f)$, it is often of interest to identify flows f_t (with $f_0 = f$ say) for which

$$ t \mapsto \mathcal{F}(f_t) $$

is monotone. (Equally, given a flow, it is often of interest to identify such functionals - these are sometimes called Lyapunov functionals for the flow.)

Example: Suppose u solves the heat equation $\partial_t u = \Delta u$ on \mathbb{R}^d (say) and $B : \mathbb{R} \to \mathbb{R}$. If

$$ \mathcal{F}(f) = \int_{\mathbb{R}^d} B(f(x)) dx, $$

then

$$ \frac{d}{dt} \mathcal{F}(u(t, \cdot)) = \frac{d}{dt} \int_{\mathbb{R}^d} B(u(t, x)) dx = \int_{\mathbb{R}^d} B'(u) \Delta u = - \int_{\mathbb{R}^d} B''(u) |\nabla u|^2, $$

so if B is convex then $\mathcal{F}(u)$ is nonincreasing.
Abstract idea: Given a functional $\mathcal{F}(f)$, it is often of interest to identify flows f_t (with $f_0 = f$ say) for which

$$t \mapsto \mathcal{F}(f_t)$$

is monotone. (Equally, given a flow, it is often of interest to identify such functionals - these are sometimes called Lyapunov functionals for the flow.)

Example: Suppose u solves the heat equation $\partial_t u = \Delta u$ on \mathbb{R}^d (say) and $B : \mathbb{R} \to \mathbb{R}$. If

$$\mathcal{F}(f) = \int_{\mathbb{R}^d} B(f(x)) dx,$$

then

$$\frac{d}{dt} \mathcal{F}(u(t, \cdot)) = \frac{d}{dt} \int_{\mathbb{R}^d} B(u(t, x)) dx = \int_{\mathbb{R}^d} B'(u) \Delta u = - \int_{\mathbb{R}^d} B''(u) |\nabla u|^2,$$

so if B is convex then $\mathcal{F}(u)$ is nonincreasing.

E.g. $\int |f|^2$ and $\int f \log f$ are nonincreasing under heat flow.
Abstract idea: Given a functional $\mathcal{F}(f)$, it is often of interest to identify flows f_t (with $f_0 = f$ say) for which

$$t \mapsto \mathcal{F}(f_t)$$

is monotone. (Equally, given a flow, it is often of interest to identify such functionals - these are sometimes called Lyapunov functionals for the flow.)

Example: Suppose u solves the heat equation $\partial_t u = \Delta u$ on \mathbb{R}^d (say) and $B : \mathbb{R} \to \mathbb{R}$. If

$$\mathcal{F}(f) = \int_{\mathbb{R}^d} B(f(x))dx,$$

then

$$\frac{d}{dt}\mathcal{F}(u(t, \cdot)) = \frac{d}{dt} \int_{\mathbb{R}^d} B(u(t, x))dx = \int_{\mathbb{R}^d} B'(u)\Delta u = -\int_{\mathbb{R}^d} B''(u)|\nabla u|^2,$$

so if B is convex then $\mathcal{F}(u)$ is nonincreasing.

E.g. $\int |f|^2$ and $\int f \log f$ are nonincreasing under heat flow.

(Heat flow not special here - for instance, any mass-preserving convolution semi-group will work.)
This works just as well for functions B of several variables of course.
This works just as well for functions B of several variables of course. Suppose u_1, u_2 solve the heat equation $\partial_t u = \Delta u$ on \mathbb{R}^d (say) and $B : \mathbb{R}^2 \to \mathbb{R}$.
This works just as well for functions B of several variables of course. Suppose u_1, u_2 solve the heat equation $\partial_t u = \Delta u$ on \mathbb{R}^d (say) and $B : \mathbb{R}^2 \to \mathbb{R}$. If

$$F(f_1, f_2) = \int_{\mathbb{R}^d} B(f_1(x), f_2(x)) dx,$$
This works just as well for functions B of several variables of course. Suppose u_1, u_2 solve the heat equation $\partial_t u = \Delta u$ on \mathbb{R}^d (say) and $B : \mathbb{R}^2 \to \mathbb{R}$. If

$$
\mathcal{F}(f_1, f_2) = \int_{\mathbb{R}^d} B(f_1(x), f_2(x)) \, dx,
$$

then writing $u = (u_1, u_2)$ we have

$$
\frac{d}{dt} \mathcal{F}(u) = - \int_{\mathbb{R}^d} \sum_{j=1}^d \langle \text{Hess}(B)(u) D_j u, D_j u \rangle,
$$
This works just as well for functions B of several variables of course. Suppose u_1, u_2 solve the heat equation $\partial_t u = \Delta u$ on \mathbb{R}^d (say) and $B : \mathbb{R}^2 \to \mathbb{R}$. If

$$\mathcal{F}(f_1, f_2) = \int_{\mathbb{R}^d} B(f_1(x), f_2(x)) dx,$$

then writing $u = (u_1, u_2)$ we have

$$\frac{d}{dt} \mathcal{F}(u) = - \int_{\mathbb{R}^d} \sum_{j=1}^d \langle \text{Hess}(B)(u) D_j u, D_j u \rangle,$$

so if B is convex
This works just as well for functions B of several variables of course. Suppose u_1, u_2 solve the heat equation $\partial_t u = \Delta u$ on \mathbb{R}^d (say) and $B : \mathbb{R}^2 \to \mathbb{R}$. If

$$F(f_1, f_2) = \int_{\mathbb{R}^d} B(f_1(x), f_2(x)) dx,$$

then writing $u = (u_1, u_2)$ we have

$$\frac{d}{dt} F(u) = - \int_{\mathbb{R}^d} \sum_{j=1}^d \langle \text{Hess}(B)(u) D_j u, D_j u \rangle,$$

so if B is convex (i.e. Hess(B) positive semi-definite)
This works just as well for functions B of several variables of course. Suppose u_1, u_2 solve the heat equation $\partial_t u = \Delta u$ on \mathbb{R}^d (say) and $B : \mathbb{R}^2 \to \mathbb{R}$. If

$$F(f_1, f_2) = \int_{\mathbb{R}^d} B(f_1(x), f_2(x)) dx,$$

then writing $u = (u_1, u_2)$ we have

$$\frac{d}{dt} F(u) = - \int_{\mathbb{R}^d} \sum_{j=1}^d \langle \text{Hess}(B)(u) D_j u, D_j u \rangle,$$

so if B is convex (i.e. $\text{Hess}(B)$ positive semi-definite) then $F(u)$ is nonincreasing.
This works just as well for functions B of several variables of course. Suppose u_1, u_2 solve the heat equation $\partial_t u = \Delta u$ on \mathbb{R}^d (say) and $B : \mathbb{R}^2 \to \mathbb{R}$. If

$$\mathcal{F}(f_1, f_2) = \int_{\mathbb{R}^d} B(f_1(x), f_2(x))dx,$$

then writing $u = (u_1, u_2)$ we have

$$\frac{d}{dt} \mathcal{F}(u) = - \int_{\mathbb{R}^d} \sum_{j=1}^{d} \langle \text{Hess}(B)(u)D_j u, D_j u \rangle,$$

so if B is convex (i.e. Hess(B) positive semi-definite) then $\mathcal{F}(u)$ is nonincreasing.

E.g. $B(x_1, x_2) = x_1^{1/2} x_2^{1/2}$ is concave, so

$$\int f_1^{1/2} f_2^{1/2} dx$$

is nondecreasing under heat flow.
This works just as well for functions B of several variables of course. Suppose u_1, u_2 solve the heat equation $\partial_t u = \Delta u$ on \mathbb{R}^d (say) and $B : \mathbb{R}^2 \to \mathbb{R}$. If

$$F(f_1, f_2) = \int_{\mathbb{R}^d} B(f_1(x), f_2(x)) dx,$$

then writing $u = (u_1, u_2)$ we have

$$\frac{d}{dt} F(u) = - \int_{\mathbb{R}^d} \sum_{j=1}^d \langle \text{Hess}(B)(u) D_j u, D_j u \rangle,$$

so if B is convex (i.e. Hess(B) positive semi-definite) then $F(u)$ is nonincreasing.

E.g. $B(x_1, x_2) = x_1^{1/2} x_2^{1/2}$ is concave, so

$$\int f_1^{1/2} f_2^{1/2} dx$$

is nondecreasing under heat flow.

E.g. $B(x, y) = (x - y) \log(\frac{x}{y})$ is convex, so the (symmetrised) “relative entropy”

$$H(f_1, f_2) := \int (f_1 - f_2) \log \left(\frac{f_1}{f_2} \right)$$

is nonincreasing under heat flow.
Often such monotonicity can be used to *understand an inequality*...
Often such monotonicity can be used to *understand an inequality*...

E.g. Consider again the functional $\mathcal{F}(f_1, f_2) = \int f_1^{1/2} f_2^{1/2}$ and solutions u_1, u_2 with initial data f_1, f_2 respectively.
Often such monotonicity can be used to understand an inequality...

E.g. Consider again the functional $\mathcal{F}(f_1, f_2) = \int f_1^{1/2} f_2^{1/2}$ and solutions u_1, u_2 with initial data f_1, f_2 respectively. We have seen that

$$
\mathcal{F}(u_1, u_2) = \int u_1(t, x)^{1/2} u_2(t, x)^{1/2} \, dx
$$

is nondecreasing; indeed we have

$$
\frac{d}{dt} \mathcal{F}(u_1, u_2) = \frac{1}{4} \int \left| \frac{\nabla u_1}{u_1} - \frac{\nabla u_2}{u_2} \right|^2 u_1^{1/2} u_2^{1/2}.
$$
Often such monotonicity can be used to *understand an inequality*...

E.g. Consider again the functional $\mathcal{F}(f_1, f_2) = \int f_1^{1/2} f_2^{1/2}$ and solutions u_1, u_2 with initial data f_1, f_2 respectively. We have seen that

$$\mathcal{F}(u_1, u_2) = \int u_1(t, x)^{1/2} u_2(t, x)^{1/2} dx$$

is nondecreasing; indeed we have

$$\frac{d}{dt} \mathcal{F}(u_1, u_2) = \frac{1}{4} \int \left| \frac{\nabla u_1}{u_1} - \frac{\nabla u_2}{u_2} \right|^2 u_1^{1/2} u_2^{1/2}.$$

Now, if f_1, f_2 are sufficiently nice then

$$\int f_1^{1/2} f_2^{1/2} = \lim_{t \to 0} \mathcal{F}(u_1, u_2)$$
Often such monotonicity can be used to *understand an inequality*...

E.g. Consider again the functional $\mathcal{F}(f_1, f_2) = \int f_1^{1/2} f_2^{1/2}$ and solutions u_1, u_2 with initial data f_1, f_2 respectively. We have seen that

$$\mathcal{F}(u_1, u_2) = \int u_1(t, x)^{1/2} u_2(t, x)^{1/2} \, dx$$

is nondecreasing; indeed we have

$$\frac{d}{dt} \mathcal{F}(u_1, u_2) = \frac{1}{4} \int \left| \frac{\nabla u_1}{u_1} - \frac{\nabla u_2}{u_2} \right|^2 u_1^{1/2} u_2^{1/2}.$$

Now, if f_1, f_2 are sufficiently nice then

$$\int f_1^{1/2} f_2^{1/2} = \lim_{t \to 0} \mathcal{F}(u_1, u_2) \leq \lim_{t \to \infty} \mathcal{F}(u_1, u_2)$$
Often such monotonicity can be used to *understand an inequality*...

E.g. Consider again the functional $\mathcal{F}(f_1, f_2) = \int f_1^{1/2} f_2^{1/2}$ and solutions u_1, u_2 with initial data f_1, f_2 respectively. We have seen that

$$\mathcal{F}(u_1, u_2) = \int u_1(t, x)^{1/2} u_2(t, x)^{1/2} \, dx$$

is nondecreasing; indeed we have

$$\frac{d}{dt} \mathcal{F}(u_1, u_2) = \frac{1}{4} \int \left| \frac{\nabla u_1}{u_1} - \frac{\nabla u_2}{u_2} \right|^2 u_1^{1/2} u_2^{1/2}. $$

Now, if f_1, f_2 are sufficiently nice then

$$\int f_1^{1/2} f_2^{1/2} = \lim_{t \to 0} \mathcal{F}(u_1, u_2) \leq \lim_{t \to \infty} \mathcal{F}(u_1, u_2) = \left(\int f_1 \right)^{1/2} \left(\int f_2 \right)^{1/2};$$
Often such monotonicity can be used to *understand an inequality*...

E.g. Consider again the functional $F(f_1, f_2) = \int f_1^{1/2} f_2^{1/2}$ and solutions u_1, u_2 with initial data f_1, f_2 respectively. We have seen that

$$F(u_1, u_2) = \int u_1(t, x)^{1/2} u_2(t, x)^{1/2} \, dx$$

is nondecreasing; indeed we have

$$\frac{d}{dt} F(u_1, u_2) = \frac{1}{4} \int \left| \frac{\nabla u_1}{u_1} - \frac{\nabla u_2}{u_2} \right|^2 u_1^{1/2} u_2^{1/2}.$$

Now, if f_1, f_2 are sufficiently nice then

$$\int f_1^{1/2} f_2^{1/2} = \lim_{t \to 0} F(u_1, u_2) \leq \lim_{t \to \infty} F(u_1, u_2) = \left(\int f_1 \right)^{1/2} \left(\int f_2 \right)^{1/2};$$

i.e. we obtain the Cauchy–Schwarz inequality.
Often such monotonicity can be used to understand an inequality...

E.g. Consider again the functional \(F(f_1, f_2) = \int f_1^{1/2} f_2^{1/2} \) and solutions \(u_1, u_2 \) with initial data \(f_1, f_2 \) respectively. We have seen that

\[F(u_1, u_2) = \int u_1(t, x)^{1/2} u_2(t, x)^{1/2} \, dx \]

is nondecreasing; indeed we have

\[\frac{d}{dt} F(u_1, u_2) = \frac{1}{4} \int \left| \frac{\nabla u_1}{u_1} - \frac{\nabla u_2}{u_2} \right|^2 u_1^{1/2} u_2^{1/2}. \]

Now, if \(f_1, f_2 \) are sufficiently nice then

\[\int f_1^{1/2} f_2^{1/2} = \lim_{t \to 0} F(u_1, u_2) \leq \lim_{t \to \infty} F(u_1, u_2) = \left(\int f_1 \right)^{1/2} \left(\int f_2 \right)^{1/2}; \]

i.e. we obtain the Cauchy–Schwarz inequality.

Which other inequalities in harmonic analysis can be understood in such a way?
Generalised Hölder inequalities

Similar monotonicity phenomena hold for

• Multilinear Hölder:

\[\int \prod_j f_j^{\frac{1}{p_j}} \leq \prod_j \left(\int f_j \right)^{\frac{1}{p_j}} ; \quad \sum_j \frac{1}{p_j} = 1. \]
Generalised Hölder inequalities

Similar monotonicity phenomena hold for

- Multilinear Hölder:

\[\int \prod_{j} f_{j}^{\frac{1}{p_{j}}} \leq \prod_{j} \left(\int f_{j} \right)^{\frac{1}{p_{j}}}; \quad \sum_{j} \frac{1}{p_{j}} = 1. \]

- Loomis–Whitney (forerunner to multilinear Kakeya):

\[\int_{\mathbb{R}^{n}} \prod_{j=1}^{n} f_{j}(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n})^{\frac{1}{n-1}} \, dx \leq \prod_{j=1}^{n} \left(\int_{\mathbb{R}^{n-1}} f_{j} \right)^{\frac{1}{n-1}}. \]
Generalised Hölder inequalities

Similar monotonicity phenomena hold for

- Multilinear Hölder:

\[
\int \prod_j f_j^{\frac{1}{p_j}} \leq \prod_j \left(\int f_j \right)^{\frac{1}{p_j}} \; ; \; \sum_j \frac{1}{p_j} = 1.
\]

- Loomis–Whitney (forerunner to multilinear Kakeya):

\[
\int_{\mathbb{R}^n} \prod_{j=1}^n f_j(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_n)^{\frac{1}{n-1}} \; dx \leq \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} f_j \right)^{\frac{1}{n-1}}.
\]

- Young’s convolution:

\[
\int \int f_1(x)^{\frac{1}{p_1}} f_2(y)^{\frac{1}{p_2}} f_3(x - y)^{\frac{1}{p_3}} \; dx dy \lesssim \left(\int f_1 \right)^{\frac{1}{p_1}} \left(\int f_2 \right)^{\frac{1}{p_2}} \left(\int f_3 \right)^{\frac{1}{p_3}},
\]

\[
\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = 2,
\]

along with certain common generalisations (Carlen–Lieb–Loss 2003, B–Carbery–Christ–Tao 2007).
Example 3 (B–Bez, 2009): For $0 < p_1, p_2, p \leq \infty$ satisfying $\frac{1}{p_1} + \frac{1}{p_2} = 1 + \frac{1}{p}$ let

$$\mathcal{F}(f_1, f_2) = \| f_1^{1/p_1} \ast f_2^{1/p_2} \|_p$$

where \ast denotes convolution on \mathbb{R}^d.

Example 3 (B–Bez, 2009): For $0 < p_1, p_2, p \leq \infty$ satisfying $\frac{1}{p_1} + \frac{1}{p_2} = 1 + \frac{1}{p}$ let

$$\mathcal{F}(f_1, f_2) = \|f_1^{1/p_1} * f_2^{1/p_2}\|_p$$

where $*$ denotes convolution on \mathbb{R}^d. Suppose u_j solves the heat equation $\partial_t u_j = \sigma_j \Delta u_j$ for $j = 1, 2$, where $\frac{1}{p_1} (1 - \frac{1}{p_1}) \sigma_2 = \frac{1}{p_2} (1 - \frac{1}{p_2}) \sigma_1$.
Example 3 (B–Bez, 2009): For $0 < p_1, p_2, p \leq \infty$ satisfying $\frac{1}{p_1} + \frac{1}{p_2} = 1 + \frac{1}{p}$ let

$$F(f_1, f_2) = \|f_1^{1/p_1} \ast f_2^{1/p_2}\|_p$$

where \ast denotes convolution on \mathbb{R}^d. Suppose u_j solves the heat equation $\partial_t u_j = \sigma_j \Delta u_j$ for $j = 1, 2$, where $\frac{1}{p_1} (1 - \frac{1}{p_1}) \sigma_2 = \frac{1}{p_2} (1 - \frac{1}{p_2}) \sigma_1$. Then

(i) if $p_1, p_2 \geq 1$, $F(u_1, u_2)$ is nondecreasing, and
Example 3 (B–Bez, 2009): For $0 < p_1, p_2, p \leq \infty$ satisfying $\frac{1}{p_1} + \frac{1}{p_2} = 1 + \frac{1}{p}$ let

$$\mathcal{F}(f_1, f_2) = \| f_1^{1/p_1} \ast f_2^{1/p_2} \|_p$$

where \ast denotes convolution on \mathbb{R}^d. Suppose u_j solves the heat equation $\partial_t u_j = \sigma_j \Delta u_j$ for $j = 1, 2$, where $\frac{1}{p_1} (1 - \frac{1}{p_1}) \sigma_2 = \frac{1}{p_2} (1 - \frac{1}{p_2}) \sigma_1$. Then

(i) if $p_1, p_2 \geq 1$, $\mathcal{F}(u_1, u_2)$ is nondecreasing, and

(ii) if $p_1, p_2 \leq 1$, $\mathcal{F}(u_1, u_2)$ is nonincreasing.
Example 3 (B–Bez, 2009): For $0 < p_1, p_2, p \leq \infty$ satisfying $\frac{1}{p_1} + \frac{1}{p_2} = 1 + \frac{1}{p}$ let

$$F(f_1, f_2) = \| f_1^{1/p_1} \ast f_2^{1/p_2} \|_p$$

where \ast denotes convolution on \mathbb{R}^d. Suppose u_j solves the heat equation

$$\partial_t u_j = \sigma_j \Delta u_j$$

for $j = 1, 2$, where $\frac{1}{p_1} (1 - \frac{1}{p_1}) \sigma_2 = \frac{1}{p_2} (1 - \frac{1}{p_2}) \sigma_1$. Then

(i) if $p_1, p_2 \geq 1$, $F(u_1, u_2)$ is nondecreasing, and

(ii) if $p_1, p_2 \leq 1$, $F(u_1, u_2)$ is nonincreasing.

Taking u_1, u_2 to be solutions with data $f_1^{p_1}, f_2^{p_2}$ respectively, then if $p_1, p_2 \geq 1$,

$$\| f_1 \ast f_2 \|_p = \lim_{t \to 0} F(u_1, u_2) \leq \lim_{t \to \infty} F(u_1, u_2) =$$
Young’s inequalities - an alternative functional

Example 3 (B–Bez, 2009): For $0 < p_1, p_2, p \leq \infty$ satisfying $\frac{1}{p_1} + \frac{1}{p_2} = 1 + \frac{1}{p}$ let

$$\mathcal{F}(f_1, f_2) = \|f_1^{1/p_1} \ast f_2^{1/p_2}\|_p$$

where \ast denotes convolution on \mathbb{R}^d. Suppose u_j solves the heat equation

$$\partial_t u_j = \sigma_j \Delta u_j \text{ for } j = 1, 2,$$

where $\frac{1}{p_1}(1 - \frac{1}{p_1})\sigma_2 = \frac{1}{p_2}(1 - \frac{1}{p_2})\sigma_1$. Then

(i) if $p_1, p_2 \geq 1$, $\mathcal{F}(u_1, u_2)$ is nondecreasing, and

(ii) if $p_1, p_2 \leq 1$, $\mathcal{F}(u_1, u_2)$ is nonincreasing.

Taking u_1, u_2 to be solutions with data $f_1^{p_1}, f_2^{p_2}$ respectively, then if $p_1, p_2 \geq 1$,

$$\|f_1 \ast f_2\|_p = \lim_{t \to 0} \mathcal{F}(u_1, u_2) \leq \lim_{t \to \infty} \mathcal{F}(u_1, u_2) = C_{p_1, p_2} \|f_1\|_{p_1} \|f_2\|_{p_2},$$

where $C_{p_1, p_2} = \|H_{\sigma_1}^{1/p_1} \ast H_{\sigma_2}^{1/p_2}\|_p$ is Beckner’s sharp constant (H_t denotes the standard heat kernel on \mathbb{R}^d).
Young’s inequalities - an alternative functional

Example 3 (B–Bez, 2009): For $0 < p_1, p_2, p \leq \infty$ satisfying $\frac{1}{p_1} + \frac{1}{p_2} = 1 + \frac{1}{p}$ let

$$\mathcal{F}(f_1, f_2) = \| f_1^{1/p_1} * f_2^{1/p_2} \|_p$$

where $*$ denotes convolution on \mathbb{R}^d. Suppose u_j solves the heat equation $\partial_t u_j = \sigma_j \Delta u_j$ for $j = 1, 2$, where $\frac{1}{p_1} (1 - \frac{1}{p_1}) \sigma_2 = \frac{1}{p_2} (1 - \frac{1}{p_2}) \sigma_1$. Then

(i) if $p_1, p_2 \geq 1$, $\mathcal{F}(u_1, u_2)$ is nondecreasing, and

(ii) if $p_1, p_2 \leq 1$, $\mathcal{F}(u_1, u_2)$ is nonincreasing.

Taking u_1, u_2 to be solutions with data $f_1^{p_1}, f_2^{p_2}$ respectively, then if $p_1, p_2 \geq 1$,

$$\| f_1 * f_2 \|_p = \lim_{t \to 0} \mathcal{F}(u_1, u_2) \leq \lim_{t \to \infty} \mathcal{F}(u_1, u_2) = C_{p_1, p_2} \| f_1 \|_{p_1} \| f_2 \|_{p_2},$$

where $C_{p_1, p_2} = \| H_{\sigma_1}^{1/p_1} * H_{\sigma_2}^{1/p_2} \|_p$ is Beckner’s sharp constant (H_t denotes the standard heat kernel on \mathbb{R}^d).

If $p_1, p_2 \leq 1$ we obtain the sharp reverse Young’s inequality of Brascamp–Lieb.
Example 4 (Carlen–Carrillo–Loss, 2010):
Example 4 (Carlen–Carrillo–Loss, 2010): For $d \geq 3$ let

$$\mathcal{F}(f) = C_{HLS} \|f\|^{2d}_{2d+2} - \int_{\mathbb{R}^d} \frac{f(x)f(y)}{|x - y|^{d-2}} \, dx \, dy,$$

where C_{HLS} is the smallest constant for which $\mathcal{F}(f) \geq 0$.
Example 4 (Carlen–Carrillo–Loss, 2010): For $d \geq 3$ let

$$F(f) = C_{HLS} \left\| f \right\|^{2d}_{2d+2} - \int_{\mathbb{R}^d} \frac{f(x)f(y)}{|x-y|^{d-2}} \, dx \, dy,$$

where C_{HLS} is the smallest constant for which $F(f) \geq 0$.

CCL: If u is a suitable solution to the fast diffusion equation

$$\partial_t u = \Delta u^m; \quad m = \frac{d}{d+2},$$

then $t \mapsto F(u)$ is nonincreasing.
Example 4 (Carlen–Carrillo–Loss, 2010): For $d \geq 3$ let

$$
\mathcal{F}(f) = C_{HLS} \|f\|^2_{2d \over d+2} - \int_{\mathbb{R}^d} \frac{f(x)f(y)}{|x-y|^{d-2}} \, dx \, dy,
$$

where C_{HLS} is the smallest constant for which $\mathcal{F}(f) \geq 0$.

CCL: If u is a suitable solution to the fast diffusion equation

$$
\partial_t u = \Delta u^m; \quad m = \frac{d}{d+2},
$$

then $t \mapsto \mathcal{F}(u)$ is nonincreasing. (In fact, if we don’t care about optimal constants this particular m is not important.)

Proof:

- Observe that $\mathcal{F}(f) = C_{HLS} \|f\|^2_{2d \over d+2} - c \int_{\mathbb{R}^d} f(-\Delta)^{-1} f$;
Example 4 (Carlen–Carrillo–Loss, 2010): For $d \geq 3$ let

$$F(f) = C_{HLS} \|f\|_{2d}^{2d} - \int_{\mathbb{R}^d} \frac{f(x)f(y)}{|x-y|^{d-2}} dx dy,$$

where C_{HLS} is the smallest constant for which $F(f) \geq 0$.

CCL: If u is a suitable solution to the fast diffusion equation

$$\partial_t u = \Delta u^m; \quad m = \frac{d}{d+2},$$

then $t \mapsto F(u)$ is nonincreasing. (In fact, if we don’t care about optimal constants this particular m is not important.)

Proof:

- Observe that $F(f) = C_{HLS} \|f\|_{2d}^{2d} - c \int_{\mathbb{R}^d} f(-\Delta)^{-1} f$;
- Differentiate $F(u)$ wrt t and use the diffusion equation;
Example 4 (Carlen–Carrillo–Loss, 2010): For $d \geq 3$ let

$$\mathcal{F}(f) = C_{HLS} \|f\|_{2d \over d+2}^2 - \int_{\mathbb{R}^d} {f(x)f(y) \over |x-y|^{d-2}} dxdy,$$

where C_{HLS} is the smallest constant for which $\mathcal{F}(f) \geq 0$.

CCL: If u is a suitable solution to the fast diffusion equation

$$\partial_t u = \Delta u^m; \quad m = {d \over d+2},$$

then $t \mapsto \mathcal{F}(u)$ is nonincreasing. (In fact, if we don’t care about optimal constants this particular m is not important.)

Proof:

- Observe that $\mathcal{F}(f) = C_{HLS} \|f\|_{2d \over d+2}^2 - c \int_{\mathbb{R}^d} f(-\Delta)^{-1} f$;
- Differentiate $\mathcal{F}(u)$ wrt t and use the diffusion equation;
- Integrate by parts;
Example 4 (Carlen–Carrillo–Loss, 2010): For $d \geq 3$ let

$$\mathcal{F}(f) = C_{HLS} \| f \|_{2d/(d+2)}^2 - c \int_{\mathbb{R}^d} \frac{f(x)f(y)}{|x-y|^{d-2}} \, dx \, dy,$$

where C_{HLS} is the smallest constant for which $\mathcal{F}(f) \geq 0$.

CCL: If u is a suitable solution to the fast diffusion equation

$$\partial_t u = \Delta u^m; \quad m = \frac{d}{d+2},$$

then $t \mapsto \mathcal{F}(u)$ is nonincreasing. (In fact, if we don’t care about optimal constants this particular m is not important.)

Proof:

- Observe that $\mathcal{F}(f) = C_{HLS} \| f \|_{2d/(d+2)}^2 - c \int_{\mathbb{R}^d} f(-\Delta)^{-1} f$;
- Differentiate $\mathcal{F}(u)$ wrt t and use the diffusion equation;
- Integrate by parts;
- Apply a sharp (Gagliardo–Nirenberg–)Sobolev inequality.
Monotonicity and restriction/Kakeya

Monotonicity perspective also attractive from a restriction/Kakeya point of view...
Monotonicity perspective also attractive from a restriction/Kakeya point of view…

Example 1: Multilinear restriction/Kakeya.
Monotonicity and restriction/Kakeya

Monotonicity perspective also attractive from a restriction/Kakeya point of view...

Example 1: Multilinear restriction/Kakeya. Let $C_{Kak}(\delta)$ be the smallest constant C in the inequality

$$\left\| \prod_{j=1}^{d} \left(\sum_{T_j \in \mathcal{T}_j} \chi_{T_j} \right) \right\|_{L^{d-1}(\mathbb{R}^d)}^{\frac{1}{d-1}} \leq C \delta^d \left(\prod_{j=1}^{d} \# \mathcal{T}_j \right)^{\frac{1}{d-1}}$$

over all transversal families $\mathcal{T}_1, \ldots, \mathcal{T}_d$ of $\delta \times \cdots \times \delta \times 1$-tubes.
Monotonicity and restriction/Kakeya

Monotonicity perspective also attractive from a restriction/Kakeya point of view...

Example 1: Multilinear restriction/Kakeya. Let $C_{Kak}(\delta)$ be the smallest constant C in the inequality

$$
\left\| \prod_{j=1}^{d} \left(\sum_{T_j \in \mathbb{T}_j} \chi_{T_j} \right) \right\|_{L^{d-1} (\mathbb{R}^d)}^{\frac{1}{d-1}} \leq C \delta^d \left(\prod_{j=1}^{d} \# \mathbb{T}_j \right)^{\frac{1}{d-1}}
$$

over all transversal families $\mathbb{T}_1, \ldots, \mathbb{T}_d$ of $\delta \times \cdots \times \delta \times 1$-tubes. Similarly, let $C_{Rest}(R)$ be the smallest constant C in the inequality

$$
\left\| \prod_{j=1}^{d} \hat{f}_j d\sigma_j \right\|_{L^{d-1} (B(0,R))}^{\frac{2}{d-1}} \leq C \prod_{j=1}^{d} \| f_j \|_{L^2 (d\sigma_j)}.
$$
Monotonicity and restriction/Kakeya

Monotonicity perspective also attractive from a restriction/Kakeya point of view...

Example 1: Multilinear restriction/Kakeya. Let $C_{Kak}(\delta)$ be the smallest constant C in the inequality

$$\left\| \prod_{j=1}^{d} \left(\sum_{T_j \in T_j} \chi_{T_j} \right) \right\|_{L^{d-1}}^{1/(d-1)} \leq C \delta^{d} \left(\prod_{j=1}^{d} \#T_j \right)^{1/(d-1)}$$

over all transversal families T_1, \ldots, T_d of $\delta \times \cdots \times \delta \times 1$-tubes. Similarly, let $C_{Rest}(R)$ be the smallest constant C in the inequality

$$\left\| \prod_{j=1}^{d} \widehat{f_j} d\sigma_j \right\|_{L^{d-1}}^{2/(d-1)}(B(0,R)) \leq C \prod_{j=1}^{d} \|f_j\|_{L^2(d\sigma_j)}.$$

$(C_{Kak}(\delta) = O(1)$ (Guth 2010)
Monotonicity and restriction/Kakeya

Monotonicity perspective also attractive from a restriction/Kakeya point of view...

Example 1: Multilinear restriction/Kakeya. Let $C_{Kak}(\delta)$ be the smallest constant C in the inequality

$$\left\| \prod_{j=1}^{d} \left(\sum_{T_j \in T_j} \chi_{T_j} \right) \right\|_{L^{\frac{1}{d-1}}(\mathbb{R}^d)}^{\frac{1}{d-1}} \leq C \delta^d \left(\prod_{j=1}^{d} \#T_j \right)^{\frac{1}{d-1}}$$

over all transversal families T_1, \ldots, T_d of $\delta \times \cdots \times \delta \times 1$-tubes. Similarly, let $C_{Rest}(R)$ be the smallest constant C in the inequality

$$\left\| \prod_{j=1}^{d} f_j^d \sigma_j \right\|_{L^{\frac{2}{d-1}}(B(0,R))}^{\frac{1}{d-1}} \leq C \prod_{j=1}^{d} \| f_j \|_{L^2(d\sigma_j)}.$$

($C_{Kak}(\delta) = O(1)$ (Guth 2010), $C_{Rest}(R) = O((\log R)^{\kappa})$ (B–Carbery–Tao + Guth.))
Monotonicity and restriction/Kakeya

Monotonicity perspective also attractive from a restriction/Kakeya point of view...

Example 1: Multilinear restriction/Kakeya. Let $C_{Kak}(\delta)$ be the smallest constant C in the inequality

$$
\left\| \prod_{j=1}^{d} \left(\sum_{T_j \in \mathbb{T}_j} \chi_{T_j} \right) \right\|_{L^{d-1}(\mathbb{R}^d)}^{\frac{1}{d-1}} \leq C \delta^d \left(\prod_{j=1}^{d} \# \mathbb{T}_j \right)^{\frac{1}{d-1}}
$$

over all transversal families $\mathbb{T}_1, \ldots, \mathbb{T}_d$ of $\delta \times \cdots \times \delta \times 1$-tubes. Similarly, let $C_{Rest}(R)$ be the smallest constant C in the inequality

$$
\left\| \prod_{j=1}^{d} \widehat{f_j d \sigma_j} \right\|_{L^{\frac{2}{d-1}}(B(0, R))} \leq C \prod_{j=1}^{d} \| f_j \|_{L^2(d \sigma_j)}.
$$

($C_{Kak}(\delta) = O(1)$ (Guth 2010), $C_{Rest}(R) = O((\log R)^{\kappa})$ (B–Carbery–Tao + Guth.))

Proposition (“B–Carbery–Tao”**)**

$C_{Kak}(\delta) \lesssim C_{Kak}(\delta/\delta') C_{Kak}(\delta')$ and $C_{Rest}(R) \lesssim C_{Kak}(R^{-1/2}) C_{Rest}(R^{1/2})$.

Jonathan Bennett (U. Birmingham)
Flow monotonicity and Strichartz inequalities
4th June 2014 9 / 29
Monotonicity and restriction/Kakeya

Monotonicity perspective also attractive from a restriction/Kakeya point of view...

Example 1: Multilinear restriction/Kakeya. Let $C_{Kak}(\delta)$ be the smallest constant C in the inequality

$$\left\| \prod_{j=1}^{d} \left(\sum_{T_j \in \mathbb{T}_j} \chi_{T_j} \right) \right\|_{L^{\frac{d-1}{d-1}}(\mathbb{R}^d)} \leq C \delta \delta^d \left(\prod_{j=1}^{d} \# \mathbb{T}_j \right)^{\frac{1}{d-1}}$$

over all transversal families $\mathbb{T}_1, \ldots, \mathbb{T}_d$ of $\delta \times \cdots \times \delta \times 1$-tubes. Similarly, let $C_{Rest}(R)$ be the smallest constant C in the inequality

$$\left\| \prod_{j=1}^{d} \hat{f}_j d\sigma_j \right\|_{L^{\frac{2}{d-1}}(B(0,R))} \leq C \prod_{j=1}^{d} \| f_j \|_{L^2(d\sigma_j)}.$$

($C_{Kak}(\delta) = O(1)$ (Guth 2010), $C_{Rest}(R) = O((\log R)^{\kappa})$ (B–Carbery–Tao + Guth.))

Proposition ("B–Carbery–Tao")

$$C_{Kak}(\delta) \lesssim C_{Kak}(\delta/\delta') C_{Kak}(\delta') \quad and \quad C_{Rest}(R) \lesssim C_{Kak}(R^{-1/2}) C_{Rest}(R^{1/2}).$$

These are "discrete monotonicity" properties, that for Kakeya at least, underly genuine monotonicity properties (B–Carbery–Tao, 2006).
Monotonicity and restriction/Kakeya

Monotonicity perspective also attractive from a restriction/Kakeya point of view…

Example 1: Multilinear restriction/Kakeya. Let $C_{Kak}(\delta)$ be the smallest constant C in the inequality

$$
\left\| \prod_{j=1}^{d} \left(\sum_{T_j \in \mathbb{T}_j} \chi_{T_j} \right) \right\|_{L_{d-1}^{\frac{1}{d-1}}(\mathbb{R}^d)} \leq C \delta^d \left(\prod_{j=1}^{d} \# \mathbb{T}_j \right)^{\frac{1}{d-1}}
$$

over all transversal families $\mathbb{T}_1, \ldots, \mathbb{T}_d$ of $\delta \times \cdots \times \delta \times 1$-tubes. Similarly, let $C_{Rest}(R)$ be the smallest constant C in the inequality

$$
\left\| \prod_{j=1}^{d} \hat{f}_j d\sigma_j \right\|_{L_{d-1}^{\frac{2}{d-1}}(B(0,R))} \leq C \prod_{j=1}^{d} \|f_j\|_{L^2(d\sigma_j)}.
$$

($C_{Kak}(\delta) = O(1)$ (Guth 2010), $C_{Rest}(R) = O((\log R)^{\kappa})$ (B–Carbery–Tao + Guth.).)

Proposition (“B–Carbery–Tao”)

$$
C_{Kak}(\delta) \lesssim C_{Kak}(\delta/\delta')C_{Kak}(\delta') \quad \text{and} \quad C_{Rest}(R) \lesssim C_{Kak}(R^{-1/2})C_{Rest}(R^{1/2}).
$$

These are “discrete monotonicity” properties, that for Kakeya at least, underly genuine monotonicity properties (B–Carbery–Tao, 2006).

For restriction such genuine monotonicity has proved more elusive.
The monotonicity perspective is also attractive in a linear setting...
The monotonicity perspective is also attractive in a linear setting...

Example 2 (philosophical): The restriction conjecture for \mathbb{S}^{n-1} may be reformulated as

$$\int_{\mathbb{R}^n} |\widehat{gd\sigma}|^q \lesssim \int_{\mathbb{R}^n} |\widehat{d\sigma}|^q$$

for all $\|g\|_p \leq 1$.
The monotonicity perspective is also attractive in a linear setting...

Example 2 (philosophical): The restriction conjecture for \mathbb{S}^{n-1} may be reformulated as

$$\int_{\mathbb{R}^n} |\hat{g}d\sigma|^q \lesssim \int_{\mathbb{R}^n} |\hat{d}\sigma|^q$$

for all $\|g\|_p \leq 1$. Indeed, this is true with constant 1 when $(q, n) = (4, 3)$ (Foschi 2013, see also Carneiro–Oliveira e Silva 2014).
The monotonicity perspective is also attractive in a linear setting...

Example 2 (philosophical): The restriction conjecture for \mathbb{S}^{n-1} may be reformulated as

$$\int_{\mathbb{R}^n} |\hat{g}d\sigma|^q \lesssim \int_{\mathbb{R}^n} |\hat{d}\sigma|^q$$

for all $\|g\|_p \leq 1$. Indeed, this is true with constant 1 when $(q, n) = (4, 3)$ (Foschi 2013, see also Carneiro–Oliveira e Silva 2014).

So, certainly tempting to look for monotonicity of appropriate functionals, such as

$$\int_{\mathbb{R}^n} |\hat{g}d\sigma|^q \quad \text{or maybe} \quad c\|g\|_p^q - \int_{\mathbb{R}^n} |\hat{g}d\sigma|^q$$

as g diffuses in a suitable way...
The monotonicity perspective is also attractive in a linear setting...

Example 2 (philosophical): The restriction conjecture for \mathbb{S}^{n-1} may be reformulated as

$$\int_{\mathbb{R}^n} |\hat{g}d\sigma|^q \lesssim \int_{\mathbb{R}^n} |\hat{d\sigma}|^q$$

for all $\|g\|_p \leq 1$. Indeed, this is true with constant 1 when $(q, n) = (4, 3)$ (Foschi 2013, see also Carneiro–Oliveira e Silva 2014).

So, certainly tempting to look for monotonicity of appropriate functionals, such as

$$\int_{\mathbb{R}^n} |\hat{g}d\sigma|^q \quad \text{or maybe} \quad c\|g\|^q_p - \int_{\mathbb{R}^n} |\hat{g}d\sigma|^q$$

as g diffuses in a suitable way...

The distinct PDE flavour of this perspective suggests a *Strichartz angle* on such problems...
The monotonicity perspective is also attractive in a linear setting...

Example 2 (philosophical): The restriction conjecture for \mathbb{S}^{n-1} may be reformulated as

$$\int_{\mathbb{R}^n} |\widehat{g} d\sigma|^q \lesssim \int_{\mathbb{R}^n} |\widehat{d\sigma}|^q$$

for all $\|g\|_p \leq 1$. Indeed, this is true with constant 1 when $(q, n) = (4, 3)$ (Foschi 2013, see also Carneiro–Oliveira e Silva 2014).

So, certainly tempting to look for monotonicity of appropriate functionals, such as

$$\int_{\mathbb{R}^n} |\widehat{g} d\sigma|^q \text{ or maybe } c\|g\|_p^q - \int_{\mathbb{R}^n} |\widehat{g} d\sigma|^q$$

as g diffuses in a suitable way...

The distinct PDE flavour of this perspective suggests a *Strichartz angle* on such problems...

This is what we’ll take for the rest of the talk.
Define the operator $e^{is\Delta}$ acting on functions $f : \mathbb{R}^d \to \mathbb{C}$ by

$$e^{is\Delta} f(x) = \int_{\mathbb{R}^d} e^{-i(s|\xi|^2 + x\cdot \xi)} \hat{f}(\xi) d\xi.$$
Define the operator $e^{is\Delta}$ acting on functions $f : \mathbb{R}^d \to \mathbb{C}$ by

$$e^{is\Delta} f(x) = \int_{\mathbb{R}^d} e^{-i(s|\xi|^2 + x \cdot \xi)} \hat{f}(\xi) d\xi.$$

$u(s, x) := e^{is\Delta} f(x)$ solves the Schrödinger equation

$$i \partial_s u = \Delta u; \quad u(0, \cdot) = f.$$
Define the operator $e^{is\Delta}$ acting on functions $f : \mathbb{R}^d \to \mathbb{C}$ by

$$e^{is\Delta}f(x) = \int_{\mathbb{R}^d} e^{-i(s|\xi|^2 + x \cdot \xi)} \hat{f}(\xi) d\xi.$$

$u(s, x) := e^{is\Delta}f(x)$ solves the Schrödinger equation

$$i\partial_su = \Delta u; \quad u(0, \cdot) = f.$$

Link with Fourier restriction: $e^{is\Delta}f(x) = gd\mu(s, x)$, where $\mu(\sigma, \xi) = \delta(\sigma - |\xi|^2)$ and $g(|\xi|^2, \xi) = \hat{f}(\xi)$.
Define the operator $e^{is\Delta}$ acting on functions $f : \mathbb{R}^d \rightarrow \mathbb{C}$ by

$$e^{is\Delta} f(x) = \int_{\mathbb{R}^d} e^{-i(s|\xi|^2 + x \cdot \xi)} \hat{f}(\xi) d\xi.$$

$u(s, x) := e^{is\Delta} f(x)$ solves the Schrödinger equation

$$i\partial_s u = \Delta u; \quad u(0, \cdot) = f.$$

Link with Fourier restriction: $e^{is\Delta} f(x) = gd\mu(s, x)$, where $\mu(\sigma, \xi) = \delta(\sigma - |\xi|^2)$ and $g(|\xi|^2, \xi) = \hat{f}(\xi)$.

Strichartz estimates:

$$\|e^{is\Delta} f\|_{L^p_s L^q_x(\mathbb{R} \times \mathbb{R}^d)} \leq C_{p, q} \|f\|_{L^2(\mathbb{R}^d)}$$
Strichartz inequalities for Schrödinger

Define the operator $e^{is\Delta}$ acting on functions $f : \mathbb{R}^d \to \mathbb{C}$ by

$$e^{is\Delta} f(x) = \int_{\mathbb{R}^d} e^{-i(s|\xi|^2 + x \cdot \xi)} \hat{f}(\xi) d\xi.$$

$u(s, x) := e^{is\Delta} f(x)$ solves the Schrödinger equation

$$i \partial_s u = \Delta u; \quad u(0, \cdot) = f.$$

Link with Fourier restriction: $e^{is\Delta} f(x) = g d\mu(s, x)$, where $\mu(\sigma, \xi) = \delta(\sigma - |\xi|^2)$ and $g(|\xi|^2, \xi) = \hat{f}(\xi)$.

Strichartz estimates:

$$\|e^{is\Delta} f\|_{L^p_t L^q_x(\mathbb{R} \times \mathbb{R}^d)} \leq C_{p, q} \|f\|_{L^2(\mathbb{R}^d)}$$

where

$$\frac{2}{p} + \frac{d}{q} = \frac{d}{2}; \quad 2 \leq p, q \leq \infty; \quad (p, q, d) \neq (2, \infty, 2) \quad \text{("Schrödinger admissible")}.$$

Due to Strichartz 1977, Keel–Tao 1997.
Define the operator $e^{is\Delta}$ acting on functions $f : \mathbb{R}^d \to \mathbb{C}$ by

$$e^{is\Delta}f(x) = \int_{\mathbb{R}^d} e^{-i(s|\xi|^2 + x \cdot \xi)} \hat{f}(\xi) d\xi.$$

$u(s, x) := e^{is\Delta}f(x)$ solves the Schrödinger equation

$$i\partial_s u = \Delta u; \quad u(0, \cdot) = f.$$

Link with Fourier restriction: $e^{is\Delta}f(x) = gd\mu(s, x)$, where $\mu(\sigma, \xi) = \delta(\sigma - |\xi|^2)$ and $g(|\xi|^2, \xi) = \hat{f}(\xi)$.

Strichartz estimates:

$$\|e^{is\Delta}f\|_{L^p_t L^q_x(\mathbb{R} \times \mathbb{R}^d)} \leq C_{p,q} \|f\|_{L^2(\mathbb{R}^d)}$$

where

$$\frac{2}{p} + \frac{d}{q} = \frac{d}{2}; \quad 2 \leq p, q \leq \infty; \quad (p, q, d) \neq (2, \infty, 2) \quad \text{("Schrödinger admissible")}.$$

Due to Strichartz 1977, Keel–Tao 1997. Sharp forms when $q \in 2\mathbb{N}$ and $q|p$ due to Foschi 2006.
Strichartz inequalities for Schrödinger

Define the operator $e^{is\Delta}$ acting on functions $f : \mathbb{R}^d \to \mathbb{C}$ by

$$e^{is\Delta} f(x) = \int_{\mathbb{R}^d} e^{-i(s|\xi|^2 + x \cdot \xi)} \hat{f}(\xi) d\xi.$$

$u(s, x) := e^{is\Delta} f(x)$ solves the Schrödinger equation

$$i \partial_s u = \Delta u; \quad u(0, \cdot) = f.$$

Link with Fourier restriction: $e^{is\Delta} f(x) = \hat{g} d\mu(s, x)$, where $\mu(\sigma, \xi) = \delta(\sigma - |\xi|^2)$ and $g(|\xi|^2, \xi) = \hat{f}(\xi)$.

Strichartz estimates:

$$\left\| e^{is\Delta} f \right\|_{L^p_s L^q_x (\mathbb{R} \times \mathbb{R}^d)} \leq C_{p, q} \left\| f \right\|_{L^2(\mathbb{R}^d)}$$

where

$$\frac{2}{p} + \frac{d}{q} = \frac{d}{2}; \quad 2 \leq p, q \leq \infty; \quad (p, q, d) \neq (2, \infty, 2) \quad \text{("Schrödinger admissible")}.$$

Due to Strichartz 1977, Keel–Tao 1997. Sharp forms when $q \in 2\mathbb{N}$ and $q|p$ due to Foschi 2006. Obs. Schrödinger admissible \implies $\left\| e^{is\Delta} f \right\|_{L^p_s L^q_x} = \left\| e^{is\Delta} \hat{f} \right\|_{L^p_s L^q_x}$.
Remark: the Schrödinger equation is itself a flow...
Remark: the Schrödinger equation is itself a flow...

Monotonicity results are known for certain spatial norms of solutions of Schrödinger equations.
Remark: the Schrödinger equation is itself a flow...

Monotonicity results are known for certain spatial norms of solutions of Schrödinger equations. E.g. if u is a solution on the line and

$$I(s) = \int_{\mathbb{R}} \int_{\mathbb{R}} |u(s, x)|^2 |u(s, y)|^2 |x - y| \, dx \, dy$$

then Planchon and Vega show that

$$I'(s) = 2 \int_{\mathbb{R}} \int_{\mathbb{R}} (\mathbb{S}(\overline{u} \partial_x u)(x) |u(y)|^2 - \mathbb{S}(\overline{u} \partial_y u)(y) |u(x)|^2) \, \text{sign}(x - y) \, dx \, dy$$

and

$$I''(s) = 4 \int_{\mathbb{R}} (\partial_x(|u|^2))^2.$$
Remark: the Schrödinger equation is itself a flow...

Monotonicity results are known for certain spatial norms of solutions of Schrödinger equations. E.g. if u is a solution on the line and

$$l(s) = \int_{\mathbb{R}} \int_{\mathbb{R}} |u(s, x)|^2 |u(s, y)|^2 |x - y| \, dx \, dy$$

then Planchon and Vega show that

$$l'(s) = 2 \int_{\mathbb{R}} \int_{\mathbb{R}} (\mathcal{F}(\bar{u}\partial_x u)(x)|u(y)|^2 - \mathcal{F}(\bar{u}\partial_y u)(y)|u(x)|^2) \, \text{sign}(x - y) \, dx \, dy$$

and

$$l''(s) = 4 \int_{\mathbb{R}} (\partial_x(|u|^2))^2.$$

In particular, by the FTC and L^2 conservation, we have the Sobolev–Strichartz estimate

$$4 \int_{\mathbb{R}} \int_{\mathbb{R}} (\partial_x(|u|^2))^2 \, dx \, ds = 4 \int_{\mathbb{R}} l''(s) \, ds \lesssim \sup_s |l'(s)| \lesssim \|u_0\|^3_2 \|\partial_x u_0\|_2.$$
Remark: the Schrödinger equation is itself a flow...

Monotonicity results are known for certain spatial norms of solutions of Schrödinger equations. E.g. if u is a solution on the line and

$$I(s) = \int_{\mathbb{R}} \int_{\mathbb{R}} |u(s, x)|^2 |u(s, y)|^2 |x - y| \, dx \, dy$$

then Planchon and Vega show that

$$I'(s) = 2 \int_{\mathbb{R}} \int_{\mathbb{R}} (\mathcal{S}(\bar{u} \partial_x u)(x) |u(y)|^2 - \mathcal{S}(\bar{u} \partial_y u)(y) |u(x)|^2) \text{sign}(x - y) \, dx \, dy$$

and

$$I''(s) = 4 \int_{\mathbb{R}} (\partial_x(|u|^2))^2.$$

In particular, by the FTC and L^2 conservation, we have the Sobolev–Strichartz estimate

$$4 \int_{\mathbb{R}} \int_{\mathbb{R}} (\partial_x(|u|^2))^2 \, dx \, ds = 4 \int_{\mathbb{R}} I''(s) \, ds \lesssim \sup_s |I'(s)| \lesssim \|u_0\|_2^3 \|\partial_x u_0\|_2.$$

(Much more can be said using such “Morawetz interaction functionals” - see PV.)
Remark: the Schrödinger equation is itself a flow...

Monotonicity results are known for certain spatial norms of solutions of Schrödinger equations. E.g. if \(u \) is a solution on the line and

\[
l(s) = \int_{\mathbb{R}} \int_{\mathbb{R}} |u(s, x)|^2 |u(s, y)|^2 |x - y| \, dx \, dy
\]

then Planchon and Vega show that

\[
l'(s) = 2 \int_{\mathbb{R}} \int_{\mathbb{R}} (\mathcal{S}(\bar{u} \partial_x u)(x)|u(y)|^2 - \mathcal{S}(\bar{u} \partial_y u)(y)|u(x)|^2) \text{sign}(x - y) \, dx \, dy
\]

and

\[
l''(s) = 4 \int_{\mathbb{R}} (\partial_x(|u|^2))^2.
\]

In particular, by the FTC and \(L^2 \) conservation, we have the Sobolev–Strichartz estimate

\[
4 \int_{\mathbb{R}} \int_{\mathbb{R}} (\partial_x(|u|^2))^2 \, dx \, ds = 4 \int_{\mathbb{R}} l''(s) \, ds \lesssim \sup_s |l'(s)| \lesssim \|u_0\|_2^3 \|\partial_x u_0\|_2.
\]

(Much more can be said using such “Morawetz interaction functionals” - see PV.)

Let’s return to diffusions...
Heat-flow monotonicity of Strichartz norms
Theorem (B-Bez-Carbery-Hundertmark; 2009)

If \((p, q, d)\) is Schrödinger admissible, \(q \in 2\mathbb{N}\) and \(q \nmid p\) then

\[
\| e^{is\Delta} (e^{t\Delta} |f|^2)^{1/2} \|_{L_p^s L_x^q} \]

is nondecreasing.
Theorem (B-Bez-Carbery-Hundertmark; 2009)

If \((p, q, d)\) is Schrödinger admissible, \(q \in 2\mathbb{N}\) and \(q|p\) then

\[t \mapsto \| e^{is\Delta} (e^{t\Delta} |f|^2)^{1/2} \|_{L^p_t L^q_x} \]

is nondecreasing.

Proof in the case \((p, q, d) = (4, 4, 2)\).
Theorem (B-Bez-Carbery-Hundertmark; 2009)

If \((p, q, d)\) is Schrödinger admissible, \(q \in 2\mathbb{N}\) and \(q \mid p\) then

\[
t \mapsto \| e^{is\Delta} (e^{t\Delta} |f|^2)^{1/2} \|_{L^p_s L^q_x}
\]

is nondecreasing.

Proof in the case \((p, q, d) = (4, 4, 2)\). Multiplying out the 4th power, noting the Fourier-invariance, gives

\[
\| e^{is\Delta} f \|_{L^4_{s,x}(\mathbb{R} \times \mathbb{R}^2)}^4 = \frac{1}{4} \langle PF, F \rangle
\]

where \(F = f \otimes f\) and \(P : L^2(\mathbb{R}^2 \times \mathbb{R}^2) \to L^2(\mathbb{R}^2 \times \mathbb{R}^2)\) is given by

\[
PG(x) = 4 \int_{(\mathbb{R}^2)^2} G(y) \delta(x_1 + x_2 - y_1 - y_2) \delta(|x_1|^2 + |x_2|^2 - |y_1|^2 - |y_2|^2) dy
\]
Heat-flow monotonicity of Strichartz norms

Theorem (B-Bez-Carbery-Hundertmark; 2009)

If \((p, q, d)\) is Schrödinger admissible, \(q \in 2\mathbb{N}\) and \(q|p\) then

\[
t \mapsto \| e^{is\Delta} (e^{t\Delta} |f|^2)^{1/2} \|_{L^p_s L^q_x}
\]

is nondecreasing.

Proof in the case \((p, q, d) = (4, 4, 2)\). Multiplying out the 4th power, noting the Fourier-invariance, gives

\[
\| e^{is\Delta} f \|_{L^4_{s,x}(\mathbb{R} \times \mathbb{R}^2)}^4 = \frac{1}{4} \langle PF, F \rangle
\]

where \(F = f \otimes f\) and \(P : L^2(\mathbb{R}^2 \times \mathbb{R}^2) \to L^2(\mathbb{R}^2 \times \mathbb{R}^2)\) is given by

\[
PG(x) = 4 \int_{(\mathbb{R}^2)^2} G(y) \delta(x_1+x_2-y_1-y_2) \delta(|x_1|^2+|x_2|^2-|y_1|^2-|y_2|^2) dy = \int_O G(\rho x) d\rho,
\]

where \(O\) denotes the group of orthogonal transformations \(\rho\) of \(\mathbb{R}^4\) fixing \((1, 0, 1, 0)\) and \((0, 1, 0, 1)\).
Theorem (B-Bez-Carbery-Hundertmark; 2009)

If \((p, q, d)\) is Schrödinger admissible, \(q \in 2\mathbb{N}\) and \(q \mid p\) then

\[t \mapsto \|e^{is\Delta}(e^{t\Delta}|f|^2)^{1/2}\|_{L^p_sL^q_x} \]

is nondecreasing.

Proof in the case \((p, q, d) = (4, 4, 2)\). Multiplying out the 4th power, noting the Fourier-invariance, gives

\[\|e^{is\Delta}f\|_{L^4_{s,x}(\mathbb{R} \times \mathbb{R}^2)}^4 = \frac{1}{4} \langle PF, F \rangle \]

where \(F = f \otimes f\) and \(P : L^2(\mathbb{R}^2 \times \mathbb{R}^2) \to L^2(\mathbb{R}^2 \times \mathbb{R}^2)\) is given by

\[PG(x) = 4 \int_{(\mathbb{R}^2)^2} G(y)\delta(x_1+x_2-y_1-y_2)\delta(|x_1|^2+|x_2|^2-|y_1|^2-|y_2|^2)dy = \int_O G(\rho x)d\rho, \]

where \(O\) denotes the group of orthogonal transformations \(\rho\) of \(\mathbb{R}^4\) fixing \((1, 0, 1, 0)\) and \((0, 1, 0, 1)\). \(P\) is an orthogonal projection.
Suppose that u solves the heat equation and write $U = u \otimes u$.
Suppose that u solves the heat equation and write $U = u \otimes u$. We have

$$\|e^{is\Delta}u^{1/2}\|_{L^4_{s,x}(\mathbb{R}^2)}^4 = \frac{1}{4} \langle PU^{1/2}, U^{1/2} \rangle$$

$$= \frac{1}{4} \int \int (\mathbb{R}^2)^2 U(\rho x)^{1/2} U(x)^{1/2} dxd\rho$$
Suppose that u solves the heat equation and write $U = u \otimes u$. We have

$$\|e^{is\Delta} u^{1/2}\|_{L^4_s, \mathbb{R} \times \mathbb{R}^2}^4 = \frac{1}{4} \langle PU^{1/2}, U^{1/2} \rangle = \frac{1}{4} \int_0 \int_{(\mathbb{R}^2)^2} U(\rho x)^{1/2} U(x)^{1/2} \, dx \, d\rho = \frac{1}{4} \int_0 \int_{(\mathbb{R}^2)^2} U_\rho(x)^{1/2} U(x)^{1/2} \, dx \, d\rho,$$

where $U_\rho(x) = U(\rho x)$.
Suppose that u solves the heat equation and write $U = u \otimes u$. We have

$$\| e^{is\Delta} u^{1/2} \|_{L^4_s, x(\mathbb{R} \times \mathbb{R}^2)}^4 = \frac{1}{4} \langle PU^{1/2}, U^{1/2} \rangle$$

$$= \frac{1}{4} \int_0 \int_{(\mathbb{R}^2)^2} U(\rho x)^{1/2} U(x)^{1/2} \, dx \, d\rho$$

$$= \frac{1}{4} \int_0 \int_{(\mathbb{R}^2)^2} U_\rho(x)^{1/2} U(x)^{1/2} \, dx \, d\rho,$$

where $U_\rho(x) = U(\rho x)$. Since U, U_ρ solve the heat equation, the theorem follows from the previously established monotonicity of

$$t \mapsto \int_{(\mathbb{R}^2)^2} U_\rho(x)^{1/2} U(x)^{1/2} \, dx$$

for each ρ.
Suppose that \(u \) solves the heat equation and write \(U = u \otimes u \). We have

\[
\| e^{is\Delta} u^{1/2} \|_{L^4_{s,x}(\mathbb{R} \times \mathbb{R}^2)}^4 = \frac{1}{4} \langle PU^{1/2}, U^{1/2} \rangle \\
= \frac{1}{4} \int_{\mathcal{O}} \int (\mathbb{R}^2)^2 U(\rho x)^{1/2} U(x)^{1/2} \, dx \, d\rho \\
= \frac{1}{4} \int_{\mathcal{O}} \int (\mathbb{R}^2)^2 U_\rho(x)^{1/2} U(x)^{1/2} \, dx \, d\rho,
\]

where \(U_\rho(x) = U(\rho x) \). Since \(U, U_\rho \) solve the heat equation, the theorem follows from the previously established monotonicity of

\[
t \mapsto \int (\mathbb{R}^2)^2 U_\rho(x)^{1/2} U(x)^{1/2} \, dx
\]

for each \(\rho \). Moreover,

\[
\frac{d}{dt} \| e^{is\Delta} u^{1/2} \|_{L^4_{s,x}(\mathbb{R} \times \mathbb{R}^2)}^4 = \frac{1}{16} \int_{\mathcal{O}} \int (\mathbb{R}^2)^2 \left| \frac{\nabla U}{U} - \frac{\nabla U_\rho}{U_\rho} \right|^2 \, dx \, d\rho.
\]
Suppose that \(u \) solves the heat equation and write \(U = u \otimes u \). We have

\[
\| e^{is\Delta} u^{1/2} \|_{L^4_s(x)}^4 = \frac{1}{4} \langle PU^{1/2}, U^{1/2} \rangle = \frac{1}{4} \int_0^T \int_{\mathbb{R}^2} U(\rho x)^{1/2} U(x)^{1/2} \, dx \, d\rho
\]

where \(U_\rho(x) = U(\rho x) \). Since \(U, U_\rho \) solve the heat equation, the theorem follows from the previously established monotonicity of

\[
t \mapsto \int_{\mathbb{R}^2} U_\rho(x)^{1/2} U(x)^{1/2} \, dx
\]

for each \(\rho \). Moreover,

\[
\frac{d}{dt} \| e^{is\Delta} u^{1/2} \|_{L^4_s(x)}^4 = \frac{1}{16} \int_0^T \int_{\mathbb{R}^2} \left| \frac{\nabla U}{U} - \frac{\nabla U_\rho}{U_\rho} \right|^2 U^{1/2} U_\rho^{1/2} \, dx \, d\rho.
\]

Shortcomings: Very rigid - does not appear to extend to other equations, other flows, Sobolev norms, non-integer exponents etc.
An alternative monotone quantity
An alternative monotone quantity

An even more elementary result is the following:
An alternative monotone quantity

An even more elementary result is the following:

Theorem (B-Bez-Iliopoulou)

If (p, q, d) is Schrödinger admissible, $q \in 2\mathbb{N}$ and $q \mid p$ then

$$t \mapsto C_{p,q} \| e^{t\Delta} f \|_2^p - \| e^{is\Delta} e^{t\Delta} f \|_{L_t^p L_x^q}^q$$

is nonincreasing (and indeed completely monotone).
An alternative monotone quantity

An even more elementary result is the following:

Theorem (B-Bez-Iliopoulou)

If \((p, q, d)\) is Schrödinger admissible, \(q \in 2\mathbb{N}\) and \(q|p\) then

\[t \mapsto C_{p,q} \| e^{i\Delta t} f \|^p_2 - \| e^{i\mathcal{A} t} e^{i\Delta} f \|^q_{L^p_x L^q_x} \]

is nonincreasing (and indeed completely monotone).

Proof. We know that if \(F = f \otimes f\) then

\[
\mathcal{F}(f) := \frac{1}{4} \| f \|^4_2 - \| e^{i\mathcal{A}} f \|^4_{L^4_{s,x}} = \frac{1}{4} (\| F \|^2_2 - \langle PF, F \rangle) = \frac{1}{4} \| F - PF \|^2_2
\]

since \(P\) is an orthogonal projection.
An alternative monotone quantity

An even more elementary result is the following:

Theorem (B-Bez-Iliopoulou)

If \((p, q, d)\) is Schrödinger admissible, \(q \in 2\mathbb{N}\) and \(q \mid p\) then

\[
t \mapsto C_{p, q} \| e^{t\Delta} f \|_2^p - \| e^{is\Delta} e^{t\Delta} f \|_{L_x^q L_s^q}^q
\]

is nonincreasing (and indeed completely monotone).

Proof. We know that if \(F = f \otimes f\) then

\[
\mathcal{F}(f) := \frac{1}{4} \| f \|_2^4 - \| e^{is\Delta} f \|_{L_x^4}^4 = \frac{1}{4} (\| F \|_2^2 - \langle PF, F \rangle) = \frac{1}{4} \| F - PF \|_2^2
\]

since \(P\) is an orthogonal projection. Furthermore, if \(U = u \otimes u\) solves the heat equation then so does \(PU\) (since the isometries \(\rho\) commute with \(\Delta\)).
An alternative monotone quantity

An even more elementary result is the following:

Theorem (B-Bez-Iliopoulou)

If \((p, q, d)\) is Schrödinger admissible, \(q \in 2\mathbb{N}\) and \(q|p\) then

\[
t \mapsto C_{p, q}^p \|e^{t\Delta} f\|_p^p - \|e^{is\Delta} e^{t\Delta} f\|_q^q
\]

is nonincreasing (and indeed completely monotone).

Proof. We know that if \(F = f \otimes f\) then

\[
\mathcal{F}(f) := \frac{1}{4} \|f\|_2^4 - \|e^{i\Delta} f\|_{L^4_{s, x}}^4 = \frac{1}{4} (\|F\|_2^2 - \langle PF, F \rangle) = \frac{1}{4} \|F - PF\|_2^2
\]

since \(P\) is an orthogonal projection. Furthermore, if \(U = u \otimes u\) solves the heat equation then so does \(PU\) (since the isometries \(\rho\) commute with \(\Delta\)). Thus \(U - PU\) solves the heat equation, and so

\[
\frac{d}{dt} \mathcal{F}(u) = \frac{1}{2} \Re \int_{(\mathbb{R}^2)^2} \overline{(U - PU)} \Delta (U - PU) = -\|\nabla (U - PU)\|_2^2 \leq 0.
\]
An alternative monotone quantity

An even more elementary result is the following:

Theorem (B-Bez-Iliopoulou)

If \((p, q, d)\) is Schrödinger admissible, \(q \in 2\mathbb{N}\) and \(q|p\) then

\[
t \mapsto C_{p,q}^p \| e^{t\Delta} f \|_2^p - \| e^{is\Delta} e^{t\Delta} f \|_{L_s^p L_x^q}^q
\]

is nonincreasing (and indeed completely monotone).

Proof. We know that if \(F = f \otimes f\) then

\[
\mathcal{F}(f) := \frac{1}{4} \| f \|_2^4 - \| e^{is\Delta} f \|_{L_s^4 L_x^4}^4 = \frac{1}{4} (\| F \|_2^2 - \langle PF, F \rangle) = \frac{1}{4} \| F - PF \|_2^2
\]

since \(P\) is an orthogonal projection. Furthermore, if \(U = u \otimes u\) solves the heat equation then so does \(PU\) (since the isometries \(\rho\) commute with \(\Delta\)). Thus \(U - PU\) solves the heat equation, and so

\[
\frac{d}{dt} \mathcal{F}(u) = \frac{1}{2} \Re \int_{(\mathbb{R}^2)^2} (U - PU) \Delta (U - PU) = -\| \nabla (U - PU) \|_2^2 \leq 0.
\]

Apparent shortcomings: Appears to benefit from similarly fortuitous circumstances as previous result.
An alternative argument

We know that

$$\| e^{is\Delta} f \|_{L^4_{s,x}(\mathbb{R} \times \mathbb{R}^2)}^4 = \frac{1}{4} \langle \hat{P} \hat{F}, \hat{F} \rangle$$
An alternative argument

We know that

$$\| e^{is\Delta} f \|_{L^4_{s,x} (\mathbb{R} \times \mathbb{R}^2)}^4 = \frac{1}{4} \langle \hat{P} \hat{F}, \hat{F} \rangle = \int_{(\mathbb{R}^2)^2} \int_{(\mathbb{R}^2)^2} \hat{F}(\xi) \hat{F}(\eta) d\Sigma_\xi(\eta) d\xi,$$

where $d\Sigma_\xi(\eta) = \delta(\xi_1 + \xi_2 - \eta_1 - \eta_2) \delta(|\xi_1|^2 + |\xi_2|^2 - |\eta_1|^2 - |\eta_2|^2) d\eta$.
An alternative argument

We know that

\[\left\| e^{is\Delta} f \right\|_{L^4_{s,x}(\mathbb{R} \times \mathbb{R}^2)}^4 = \frac{1}{4} \langle P \hat{F}, \hat{F} \rangle = \int_{(\mathbb{R}^2)^2} \int_{(\mathbb{R}^2)^2} \hat{F}(\xi)\hat{F}(\eta) d\Sigma_\xi(\eta) d\xi, \]

where \(d\Sigma_\xi(\eta) = \delta(\xi_1 + \xi_2 - \eta_1 - \eta_2)\delta(|\xi_1|^2 + |\xi_2|^2 - |\eta_1|^2 - |\eta_2|^2) d\eta. \) Next observe that

\[\int_{(\mathbb{R}^2)^2} d\Sigma_\xi(\eta) = \frac{1}{4} P1(\xi) \equiv \frac{1}{4}. \]
An alternative argument

We know that

$$\| e^{is\Delta f} \|_{L^4_t L^4_x(\mathbb{R} \times \mathbb{R}^2)}^4 = \frac{1}{4} \langle P \hat{F}, \hat{F} \rangle = \int_{(\mathbb{R}^2)^2} \int_{(\mathbb{R}^2)^2} \hat{F}(\xi)\overline{\hat{F}(\eta)}d\Sigma_\xi(\eta)d\xi,$$

where $d\Sigma_\xi(\eta) = \delta(\xi_1 + \xi_2 - \eta_1 - \eta_2)\delta(|\xi_1|^2 + |\xi_2|^2 - |\eta_1|^2 - |\eta_2|^2)d\eta$. Next observe that

$$\int_{(\mathbb{R}^2)^2} d\Sigma_\xi(\eta) = \frac{1}{4} P1(\xi) \equiv \frac{1}{4} \quad (= \mu \ast \mu(|\xi_1|^2 + |\xi_2|^2, \xi_1 + \xi_2))$$
An alternative argument

We know that

$$\| e^{is\Delta} f \|_{L^4_{s,x}(\mathbb{R} \times \mathbb{R}^2)}^4 = \frac{1}{4} \langle P \hat{F}, \hat{F} \rangle = \int_{(\mathbb{R}^2)^2} \int_{(\mathbb{R}^2)^2} \hat{F}(\xi)\overline{\hat{F}(\eta)} d\Sigma_\xi(\eta) d\xi,$$

where $d\Sigma_\xi(\eta) = \delta(\xi_1 + \xi_2 - \eta_1 - \eta_2)\delta(|\xi_1|^2 + |\xi_2|^2 - |\eta_1|^2 - |\eta_2|^2) d\eta$. Next observe that

$$\int_{(\mathbb{R}^2)^2} d\Sigma_\xi(\eta) = \frac{1}{4} P1(\xi) \equiv \frac{1}{4}. \quad (= \mu * \mu(|\xi_1|^2 + |\xi_2|^2, \xi_1 + \xi_2))$$

Using this, along with $d\Sigma_\xi(\eta) d\xi = d\Sigma_\eta(\xi) d\eta$, gives

$$\| f \|_{2}^4 = \| \hat{f} \|_{2}^4 = \| \hat{F} \|_{2}^2 = 4 \int_{(\mathbb{R}^2)^2} \int_{(\mathbb{R}^2)^2} |\hat{F}(\xi)|^2 d\Sigma_\xi(\eta) d\xi$$

$$= 2 \int_{(\mathbb{R}^2)^2} \int_{(\mathbb{R}^2)^2} \left(|\hat{F}(\xi)|^2 + |\hat{F}(\eta)|^2 \right) d\Sigma_\xi(\eta) d\xi.$$
Thus

\[\mathcal{F}(f) := \frac{1}{4} \left\| f \right\|_2^4 - \left\| e^{is\Delta} f \right\|_{L^4_{s,x}}^4 \]

\[= \frac{1}{2} \int_{(\mathbb{R}^2)^2} \int_{(\mathbb{R}^2)^2} \left(|\hat{F}(\xi)|^2 + |\hat{F}(\eta)|^2 - 2\hat{F}(\xi)\overline{\hat{F}(\eta)} \right) d\Sigma_\xi(\eta) d\xi \]

\[= \frac{1}{2} \int_{(\mathbb{R}^2)^2} \int_{(\mathbb{R}^2)^2} |\hat{F}(\xi) - \hat{F}(\eta)|^2 d\Sigma_\xi(\eta) d\xi, \]
Thus

\[\mathcal{F}(f) := \frac{1}{4} \| f \|_2^4 - \| e^{is\Delta} f \|_{L^4_{s,x}}^4 \]

\[= \frac{1}{2} \int (\mathbb{R}^2)^2 \int (\mathbb{R}^2)^2 \left(|\hat{F}(\xi)|^2 + |\hat{F}(\eta)|^2 - 2\hat{F}(\xi)\hat{F}(\eta) \right) d\Sigma_\xi(\eta) d\xi \]

\[= \frac{1}{2} \int (\mathbb{R}^2)^2 \int (\mathbb{R}^2)^2 |\hat{F}(\xi) - \hat{F}(\eta)|^2 d\Sigma_\xi(\eta) d\xi, \]

and so

\[\mathcal{F}(e^{t\Delta} f) = \frac{1}{2} \int (\mathbb{R}^2)^2 \int (\mathbb{R}^2)^2 |e^{-t|\xi|^2} \hat{F}(\xi) - e^{-t|\eta|^2} \hat{F}(\eta)|^2 d\Sigma_\xi(\eta) d\xi \]

\[= \frac{1}{2} \int (\mathbb{R}^2)^2 \int (\mathbb{R}^2)^2 e^{-2t|\xi|^2} |\hat{F}(\xi) - \hat{F}(\eta)|^2 d\Sigma_\xi(\eta) d\xi, \]

since \(|\xi|^2 = |\xi_1|^2 + |\xi_2|^2 = |\eta_1|^2 + |\eta_2|^2 = |\eta|^2\) on the support of \(d\Sigma_\xi(\eta)\).
Thus

\[\mathcal{F}(f) := \frac{1}{4} \| f \|_2^4 - \| e^{is\Delta} f \|_{L^4_{s,x}}^4 \]

\[= \frac{1}{2} \int_{(\mathbb{R}^2)^2} \int_{(\mathbb{R}^2)^2} \left(|\hat{F}(\xi)|^2 + |\hat{F}(\eta)|^2 - 2|\hat{F}(\xi)\hat{F}(\eta)| \right) d\Sigma_\xi(\eta) d\xi \]

\[= \frac{1}{2} \int_{(\mathbb{R}^2)^2} \int_{(\mathbb{R}^2)^2} |\hat{F}(\xi) - \hat{F}(\eta)|^2 d\Sigma_\xi(\eta) d\xi, \]

and so

\[\mathcal{F}(e^{t\Delta} f) = \frac{1}{2} \int_{(\mathbb{R}^2)^2} \int_{(\mathbb{R}^2)^2} |e^{-t|\xi|^2} \hat{F}(\xi) - e^{-t|\eta|^2} \hat{F}(\eta)|^2 d\Sigma_\xi(\eta) d\xi \]

\[= \frac{1}{2} \int_{(\mathbb{R}^2)^2} \int_{(\mathbb{R}^2)^2} e^{-2t|\xi|^2} |\hat{F}(\xi) - \hat{F}(\eta)|^2 d\Sigma_\xi(\eta) d\xi, \]

since \(|\xi|^2 = |\xi_1|^2 + |\xi_2|^2 = |\eta_1|^2 + |\eta_2|^2 = |\eta|^2 \) on the support of \(d\Sigma_\xi(\eta) \).

Thus \(\mathcal{F}(e^{t\Delta} f) \) is completely monotone.
Generalisations
Generalisations

Approach extends considerably to an array of sharp Sobolev–Strichartz inequalities;
Generalisations

Approach extends considerably to an array of sharp Sobolev–Strichartz inequalities; for example

\[\| (-\Delta)^{\frac{2-d}{4}} e^{is\Delta} f \|^2_{L^2(\mathbb{R} \times \mathbb{R}^d)} \leq \text{OT}(d) \| f \|^4_{L^2(\mathbb{R}^d)}. \]

Here \(d \geq 2, \)

\[\text{OT}(d) = \frac{2^{-d} \pi^{\frac{2-d}{2}}}{\Gamma\left(\frac{d}{2}\right)} \]

is the optimal constant (Ozawa–Tsutsumi), and is attained on gaussians.
Approach extends considerably to an array of sharp Sobolev–Strichartz inequalities; for example

\[\| (-\Delta) \frac{2-d}{4} | e^{is\Delta} f |^2 \|_{L^2(\mathbb{R} \times \mathbb{R}^d)}^2 \leq \text{OT}(d) \| f \|_{L^2(\mathbb{R}^d)}^4. \]

Here \(d \geq 2, \)

\[\text{OT}(d) = \frac{2^{-d} \pi \frac{2-d}{2}}{\Gamma\left(\frac{d}{2} \right)} \]

is the optimal constant (Ozawa–Tsutsumi), and is attained on gaussians. This is a variant of the classical Sobolev–Strichartz estimate

\[\| e^{is\Delta} f \|_{L^4(\mathbb{R} \times \mathbb{R}^d)} \lesssim \| f \|_{\dot{H}^{\frac{d-2}{4}}(\mathbb{R}^d)}. \]
Generalisations

Approach extends considerably to an array of sharp Sobolev–Strichartz inequalities; for example

\[\|(-\Delta)^{\frac{2-d}{4}} e^{is\Delta} f\|^2_{L^2(\mathbb{R} \times \mathbb{R}^d)} \leq \text{OT}(d) \| f \|^4_{L^2(\mathbb{R}^d)}. \]

Here \(d \geq 2, \)

\[\text{OT}(d) = \frac{2^{-d} \pi^{\frac{2-d}{2}}}{\Gamma\left(\frac{d}{2}\right)} \]

is the optimal constant (Ozawa–Tsutsumi), and is attained on gaussians. This is a variant of the classical Sobolev–Strichartz estimate

\[\| e^{is\Delta} f \|_{L^4(\mathbb{R} \times \mathbb{R}^d)} \lesssim \| f \|_{\dot{H}^{\frac{d-2}{4}}(\mathbb{R}^d)}. \]

Theorem (B–Bez–Iliopoulou)

Let \(d \geq 2 \) and \(f \in L^2(\mathbb{R}^d). \) Then

\[t \mapsto \text{OT}(d)\| e^{t\Delta} f \|_{L^2(\mathbb{R}^d)}^4 - \|(-\Delta)^{\frac{2-d}{4}} e^{is\Delta} e^{t\Delta} f\|^2_{L^2(\mathbb{R} \times \mathbb{R}^d)} \]

is completely monotone (decreasing).
The wave equation

Strichartz inequalities: if $p = \frac{2(d+1)}{d-1}$ then

$$\|e^{-isD}f\|_{L^p_s,\mathbb{R}^d} \leq c_d \|f\|_{\dot{H}^{1/2}({\mathbb{R}^d})},$$

where $D = \sqrt{-\Delta}$.
Strichartz inequalities: if \(p = \frac{2(d+1)}{d-1} \) then

\[
\| e^{-isD} f \|_{L^p_s, x(\mathbb{R} \times \mathbb{R}^d)} \leq c_d \| f \|_{\dot{H}^{1/2}(\mathbb{R}^d)},
\]

where \(D = \sqrt{-\Delta} \). Extremisers take form

\[
f(x) = (1 + |x|^2)^{- (d-1)/2} \quad \text{(equiv. } \hat{f}(\xi) = e^{-|\xi|/|\xi|})
\]

for \(d = 2, 3 \), and \(c_2 = (2\pi)^{-1/6}, c_3 = (2\pi)^{-1/4} \)
The wave equation

Strichartz inequalities: if \(p = \frac{2(d+1)}{d-1} \) then

\[
\| e^{-isD} f \|_{L^p_s \times \mathbb{R} \times \mathbb{R}^d} \leq c_d \| f \|_{H^{1/2} (\mathbb{R}^d)},
\]

where \(D = \sqrt{-\Delta} \). Extremisers take form

\[
f(x) = (1 + |x|^2)^{-\frac{(d-1)}{2}} \quad \text{(equiv. } \hat{f}(\xi) = e^{-|\xi|}/|\xi|)\]

for \(d = 2, 3 \), and \(c_2 = (2\pi)^{-1/6}, c_3 = (2\pi)^{-1/4} \) (Foschi 2006).
Strichartz inequalities: if \(p = \frac{2(d+1)}{d-1} \) then

\[
\| e^{-isD} f \|_{L^p_s, x(\mathbb{R} \times \mathbb{R}^d)} \leq c_d \| f \|_{\dot{H}^{1/2}(\mathbb{R}^d)},
\]

where \(D = \sqrt{-\Delta} \). Extremisers take form

\[
f(x) = (1 + |x|^2)^{-\frac{d-1}{2}} \quad \text{(equiv. } \hat{f}(\xi) = e^{-|\xi|/|\xi|})
\]

for \(d = 2, 3 \), and \(c_2 = (2\pi)^{-1/6}, c_3 = (2\pi)^{-1/4} \) (Foschi 2006).

Link with Fourier restriction:

\[
e^{-isD} f(x) = \hat{g\mu}(s, x),
\]

where now \(\mu(\sigma, \xi) = \delta(\sigma - |\xi|)/|\xi| \) and \(g(|\xi|, \xi) = |\xi|\hat{f}(\xi) \).
The wave equation

Strichartz inequalities: if \(p = \frac{2(d+1)}{d-1} \) then

\[
\| e^{-isD} f \|_{L^p_{s,x} (\mathbb{R} \times \mathbb{R}^d)} \leq c_d \| f \|_{\dot{H}^{1/2}(\mathbb{R}^d)},
\]

where \(D = \sqrt{-\Delta} \). Extremisers take form

\[
f(x) = (1 + |x|^2)^{- (d-1)/2}
\]

(equiv. \(\hat{f} (\xi) = e^{-|\xi|/|\xi|} \))

for \(d = 2, 3 \), and \(c_2 = (2\pi)^{-1/6}, c_3 = (2\pi)^{-1/4} \) (Foschi 2006).

Link with Fourier restriction:

\[
e^{-isD} f(x) = \hat{g d \mu}(s, x),
\]

where now \(\mu(\sigma, \xi) = \delta(\sigma - |\xi|)/|\xi| \) and \(g(|\xi|, \xi) = |\xi| \hat{f}(\xi) \).

Above Strichartz inequality equivalent to

\[
\| \hat{g d \mu} \|_{L^p(\mathbb{R}^{d+1})} \leq c_d \| g \|_{L^2(d\mu)}
\]
The wave equation

Strichartz inequalities: if \(p = \frac{2(d+1)}{d-1} \) then

\[
\| e^{-isD} f \|_{L^p_{s,x}(\mathbb{R} \times \mathbb{R}^d)} \leq c_d \| f \|_{\dot{H}^{1/2}(\mathbb{R}^d)},
\]

where \(D = \sqrt{-\Delta} \). Extremisers take form

\[
f(x) = (1 + |x|^2)^{-\frac{(d-1)}{2}} \quad \text{(equiv. } \hat{f}((\xi) = e^{-|\xi|/|\xi|})
\]

for \(d = 2, 3 \), and \(c_2 = (2\pi)^{-1/6}, c_3 = (2\pi)^{-1/4} \) (Foschi 2006).

Link with Fourier restriction:

\[
e^{-isD} f(x) = \widehat{gd\mu}(s, x),
\]

where now \(\mu(\sigma, \xi) = \delta(\sigma - |\xi|)/|\xi| \) and \(g(|\xi|, \xi) = |\xi| \hat{f}(\xi) \).

Above Strichartz inequality equivalent to

\[
\| \widehat{gd\mu} \|_{L^p(\mathbb{R}^{d+1})} \leq c_d \| g \|_{L^2(d\mu)}
\]

– the \(L^2 \) restriction theorem for the cone.
Theorem (B-Bez-Ilioupoulou)

Let \(D = \sqrt{-\Delta} \). If \(p = \frac{2(d+1)}{d-1} \in 2\mathbb{N} \) (i.e. \(d = 2, 3 \))
Theorem (B-Bez-Ilioupoulou)

Let \(D = \sqrt{-\Delta} \). If \(p = \frac{2d+1}{d-1} \in 2\mathbb{N} \) (i.e. \(d = 2, 3 \)) then

\[
t \mapsto c_d^p \| e^{-tD} f \|_{H^{1/2}(\mathbb{R}^d)}^p - \| e^{-isD} e^{-tD} f \|_{L^p_{s,x}(\mathbb{R}^d \times \mathbb{R}^d)}^p
\]

is completely monotone.
Theorem (B-Bez-Ilioupoulou)

Let $D = \sqrt{-\Delta}$. If $p = \frac{2(d+1)}{d-1} \in 2\mathbb{N}$ (i.e. $d = 2, 3$) then

$$t \mapsto c_d^p \| e^{-tD} f \|_{H^{1/2}(\mathbb{R}^d)}^p - \| e^{-isD} e^{-tD} f \|_{L^p_s, x(\mathbb{R} \times \mathbb{R}^d)}^p$$

is completely monotone.

Proof in the case $d = 3$. Write

$$\| e^{isD} f \|_{L^4(\mathbb{R} \times \mathbb{R}^3)}^4 = \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} \hat{F}(\xi) \hat{F}(\eta) d\Sigma_\xi(\eta) d\xi,$$

where now $F = D^{1/2} f \otimes D^{1/2} f$ and

$$d\Sigma_\xi(\eta) = \frac{\delta(\xi_1 + \xi_2 - \eta_1 - \eta_2) \delta(|\xi_1| + |\xi_2| - |\eta_1| - |\eta_2|)}{|\xi_1|^{1/2} |\xi_2|^{1/2} |\eta_1|^{1/2} |\eta_2|^{1/2}}.$$
Theorem (B-Bez-Ilioupoulou)

Let $\Delta = -\Delta$. If $p = \frac{2(d+1)}{d-1} \in 2\mathbb{N}$ (i.e. $d = 2, 3$) then

$$t \mapsto c_d^p \| e^{-tD} f \|_{H^{1/2}(\mathbb{R}^d)}^p - \| e^{-isD} e^{-tD} f \|_{L^p_{5,\infty}(\mathbb{R} \times \mathbb{R}^d)}^p$$

is completely monotone.

Proof in the case $d = 3$. Write

$$\| e^{isD} f \|_{L^4(\mathbb{R} \times \mathbb{R}^3)}^4 = \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} \hat{F}(\xi) \hat{F}(\eta) d\Sigma_\xi(\eta) d\xi,$$

where now $F = D^{1/2} f \otimes D^{1/2} f$ and

$$d\Sigma_\xi(\eta) = \frac{\delta(\xi_1 + \xi_2 - \eta_1 - \eta_2) \delta(|\xi_1| + |\xi_2| - |\eta_1| - |\eta_2|)}{|\xi_1|^{1/2} |\xi_2|^{1/2} |\eta_1|^{1/2} |\eta_2|^{1/2}}.$$

Elementary calculations (see Foschi) reveal that

$$\int_{(\mathbb{R}^3)^2} \frac{|\xi_1|^{1/2} |\xi_2|^{1/2}}{|\eta_1|^{1/2} |\eta_2|^{1/2}} d\Sigma_\xi(\eta) \equiv \frac{1}{2\pi}. \quad (= \mu * \mu(|\xi_1| + |\xi_2|, \xi_1 + \xi_2))$$
Using this, together with $d\Sigma_\xi(\eta)d\xi = d\Sigma_\eta(\xi)d\eta$, we may write

$$
\frac{1}{2\pi} \| f \|_{{H^{1/2}}}^4 = \frac{1}{2\pi} \| \hat{F} \|_2^2 = \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} |\hat{F}(\xi)|^2 \frac{|\xi_1|^{1/2} |\xi_2|^{1/2}}{|\eta_1|^{1/2} |\eta_2|^{1/2}} d\Sigma_\xi(\eta) d\xi
$$

$$
= \frac{1}{2} \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} \left(\Phi(\xi, \eta) |\hat{F}(\xi)|^2 + \Phi(\eta, \xi) |\hat{F}(\eta)|^2 \right) d\Sigma_\xi(\eta) d\xi
$$

where $\Phi(\xi, \eta) = \frac{|\xi_1|^{1/2} |\xi_2|^{1/2}}{|\eta_1|^{1/2} |\eta_2|^{1/2}}$.
Using this, together with $d\Sigma_\xi(\eta)d\xi = d\Sigma_\eta(\xi)d\eta$, we may write

$$\frac{1}{2\pi} \|f\|_{H^{1/2}}^4 = \frac{1}{2\pi} \|\hat{F}\|_2^2 = \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} |\hat{F}^2(\xi)|^2 \frac{|\xi_1|^{1/2}|\xi_2|^{1/2}}{|\eta_1|^{1/2}|\eta_2|^{1/2}} d\Sigma_\xi(\eta)d\xi$$

$$= \frac{1}{2} \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} \left(\Phi(\xi, \eta)|\hat{F}(\xi)|^2 + \Phi(\eta, \xi)|\hat{F}(\eta)|^2 \right) d\Sigma_\xi(\eta)d\xi$$

where $\Phi(\xi, \eta) = \frac{|\xi_1|^{1/2}|\xi_2|^{1/2}}{|\eta_1|^{1/2}|\eta_2|^{1/2}}$. Thus, since $\Phi(\eta, \xi) = \Phi(\xi, \eta)^{-1}$,

$$\mathcal{F}(f) := \frac{1}{2\pi} \|f\|_{H^{1/2}}^4 - \|e^{-isD}f\|_{L^4}^4$$

$$= \frac{1}{2} \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} \Phi(\xi, \eta)^{1/2}\hat{F}(\xi) - \Phi(\eta, \xi)^{1/2}\hat{F}(\eta)|^2 d\Sigma_\xi(\eta)d\xi$$
Using this, together with $d\Sigma_\xi(\eta)d\xi = d\Sigma_\eta(\xi)d\eta$, we may write

$$
\frac{1}{2\pi} \|f\|_{H^{1/2}}^4 = \frac{1}{2\pi} \|\hat{F}\|_2^2 = \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} |\hat{F}(\xi)|^2 \frac{\xi_1^{1/2}\xi_2^{1/2}}{\eta_1^{1/2}\eta_2^{1/2}} d\Sigma_\xi(\eta)d\xi
$$

$$
= \frac{1}{2} \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} \left(\Phi(\xi, \eta) |\hat{F}(\xi)|^2 + \Phi(\eta, \xi) |\hat{F}(\eta)|^2 \right) d\Sigma_\xi(\eta)d\xi
$$

where $\Phi(\xi, \eta) = \frac{\xi_1^{1/2}\xi_2^{1/2}}{\eta_1^{1/2}\eta_2^{1/2}}$. Thus, since $\Phi(\eta, \xi) = \Phi(\xi, \eta)^{-1}$,

$$
\mathcal{F}(f) := \frac{1}{2\pi} \|f\|_{H^{1/2}}^4 - \|e^{-isD}f\|_4^4
$$

$$
= \frac{1}{2} \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} \Phi(\xi, \eta)^{1/2} \hat{F}(\xi) - \Phi(\eta, \xi)^{1/2} \hat{F}(\eta)^2 d\Sigma_\xi(\eta)d\xi
$$

Using the support of $d\Sigma_\xi(\eta)d\eta$ we conclude that

$$
\mathcal{F}(e^{-tD}f) = \frac{1}{2} \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} e^{-2t(|\xi_1|+|\xi_2|)} |\Phi(\xi, \eta)^{1/2} \hat{F}(\xi) - \Phi(\eta, \xi)^{1/2} \hat{F}(\eta)|^2 d\Sigma_\xi(\eta)d\xi,
$$
Using this, together with $d\Sigma_\xi(\eta)d\xi = d\Sigma_\eta(\xi)d\eta$, we may write

$$\frac{1}{2\pi} \|f\|_{H^{1/2}}^4 = \frac{1}{2\pi} \|\hat{F}\|_2^2 = \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} |\hat{F}(\xi)|^2 \frac{|\xi_1|^{1/2}|\xi_2|^{1/2}}{|\eta_1|^{1/2}|\eta_2|^{1/2}} d\Sigma_\xi(\eta)d\xi$$

$$= \frac{1}{2} \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} \left(\Phi(\xi, \eta)|\hat{F}(\xi)|^2 + \Phi(\eta, \xi)|\hat{F}(\eta)|^2 \right) d\Sigma_\xi(\eta)d\xi$$

where $\Phi(\xi, \eta) = \frac{|\xi_1|^{1/2}|\xi_2|^{1/2}}{|\eta_1|^{1/2}|\eta_2|^{1/2}}$. Thus, since $\Phi(\eta, \xi) = \Phi(\xi, \eta)^{-1}$,

$$\mathcal{F}(f) := \frac{1}{2\pi} \|f\|_{H^{1/2}}^4 - \|e^{-isD}f\|_4^4$$

$$= \frac{1}{2} \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} \Phi(\xi, \eta)^{1/2}\hat{F}(\xi) - \Phi(\eta, \xi)^{1/2}\hat{F}(\eta)|^2 d\Sigma_\xi(\eta)d\xi$$

Using the support of $d\Sigma_\xi(\eta)d\eta$ we conclude that

$$\mathcal{F}(e^{-tD}f) = \frac{1}{2} \int_{(\mathbb{R}^3)^2} \int_{(\mathbb{R}^3)^2} e^{-2t(|\xi_1|+|\xi_2|)}|\Phi(\xi, \eta)^{1/2}\hat{F}(\xi) - \Phi(\eta, \xi)^{1/2}\hat{F}(\eta)|^2 d\Sigma_\xi(\eta)d\xi,$$

which is completely monotone.
Remark on the Stein–Tomas restriction theorem
Consider the Fourier extension operator

$$\mathcal{E} g(x, s) := \int_U g(\xi) e^{i(s\phi(\xi) + x \cdot \xi)} d\xi$$

associated with the smooth function $\phi : U \to [0, \infty)$, where U is some compact subset of \mathbb{R}^2.
Consider the Fourier extension operator

\[E g(x, s) := \int_U g(\xi) e^{i(s\phi(\xi) + x \cdot \xi)} \, d\xi \]

associated with the smooth function \(\phi : U \to [0, \infty) \), where \(U \) is some compact subset of \(\mathbb{R}^2 \). We assume that \(\phi \) graphs a smooth surface \(S \) with everywhere nonvanishing curvature.
Remark on the Stein–Tomas restriction theorem

Consider the Fourier extension operator

\[\mathcal{E}g(x, s) := \int_{U} g(\xi) e^{i(s\phi(\xi) + x \cdot \xi)} d\xi \]

associated with the smooth function \(\phi : U \to [0, \infty) \), where \(U \) is some compact subset of \(\mathbb{R}^2 \). We assume that \(\phi \) graphs a smooth surface \(S \) with everywhere nonvanishing curvature.

Now, for \(g \in L^2(U) \) and \(t \geq 0 \) let \(g_t(\xi) = e^{-t\phi(\xi)}g(\xi) \).
Remark on the Stein–Tomas restriction theorem

Consider the Fourier extension operator

\[\mathcal{E} g(x, s) := \int_{U} g(\xi) e^{i(s \phi(\xi) + x \cdot \xi)} d\xi \]

associated with the smooth function \(\phi : U \rightarrow [0, \infty) \), where \(U \) is some compact subset of \(\mathbb{R}^2 \). We assume that \(\phi \) graphs a smooth surface \(S \) with everywhere nonvanishing curvature.

Now, for \(g \in L^2(U) \) and \(t \geq 0 \) let \(g_t(\xi) = e^{-t \phi(\xi)} g(\xi) \).

Theorem

There exists a constant \(c < \infty \) such that the function \(Q : (0, \infty) \rightarrow \mathbb{R} \) given by

\[Q(t) = c \| g_t \|^4_{L^2(U)} - \| \mathcal{E} g_t \|^4_{L^4_{x,s}(\mathbb{R}^2 \times \mathbb{R})} \]

is completely monotone decreasing.
Remark on the Stein–Tomas restriction theorem

Consider the Fourier extension operator

\[\mathcal{E} g(x, s) := \int_U g(\xi) e^{i(s\phi(\xi) + x \cdot \xi)} d\xi \]

associated with the smooth function \(\phi : U \to [0, \infty) \), where \(U \) is some compact subset of \(\mathbb{R}^2 \). We assume that \(\phi \) graphs a smooth surface \(S \) with everywhere nonvanishing curvature.

Now, for \(g \in L^2(U) \) and \(t \geq 0 \) let \(g_t(\xi) = e^{-t\phi(\xi)} g(\xi) \).

Theorem

There exists a constant \(c < \infty \) such that the function \(Q : (0, \infty) \to \mathbb{R} \) given by

\[Q(t) = c \| g_t \|^4_{L^2(U)} - \| \mathcal{E} g_t \|^4_{L^4_{x,s}(\mathbb{R}^2 \times \mathbb{R})} \]

is completely monotone decreasing. Moreover

\[(-1)^k Q^{(k)}(t) \geq \int_{U^4} (\phi(\xi_1) + \phi(\xi_2))^k |g_t \otimes g_t(\xi) - g_t \otimes g_t(\eta)|^2 d\Sigma_\xi(\eta) d\xi \]

where \(d\Sigma_\xi(\eta) = \delta(\phi(\xi_1) + \phi(\xi_2) - \phi(\eta_1) - \phi(\eta_2)) \delta(\xi_1 + \xi_2 - \eta_1 - \eta_2) d\eta \).
Can we remove the arithmetic condition on p, q?
Can we remove the arithmetic condition on p, q?

Yes, but at a fairly large cost:
Can we remove the arithmetic condition on p, q?

Yes, but at a fairly large cost:

Theorem

If (p, q, d) are Schrödinger admissible then there exists a constant $c \geq C_{p,q}$ such that

$$t \mapsto c^p \| e^{t\Delta} f \|_{L^2(R^d)}^p - \| e^{is\Delta} e^{t\Delta} f \|_{L^p L^q_x(R \times R^d)}^p$$

is nonincreasing.
Can we remove the arithmetic condition on p, q?

Yes, but at a fairly large cost:

Theorem

If (p, q, d) are Schrödinger admissible then there exists a constant $c \geq C_{p,q}$ such that

$$t \mapsto c^p \|e^{t\Delta}f\|_{L^2(\mathbb{R}^d)}^p - \|e^{is\Delta}e^{t\Delta}f\|_{L_s^p L_x^q(\mathbb{R} \times \mathbb{R}^d)}^p$$

is nonincreasing.

Proof.
Can we remove the arithmetic condition on p, q?

Yes, but at a fairly large cost:

Theorem

If (p, q, d) are Schrödinger admissible then there exists a constant $c \geq C_{p,q}$ such that

$$t \mapsto c^p \| e^{t\Delta} f \|_{L^2(\mathbb{R}^d)}^p - \| e^{is\Delta} e^{t\Delta} f \|_{L^p_s L^q_x(\mathbb{R} \times \mathbb{R}^d)}^p$$

is nonincreasing.

Proof. Notice that this may be rewritten as the monotonicity of the expression

$$t \mapsto \int_{\mathbb{R}} \left(\int_{\mathbb{R}^2} |u(s, t, x)|^q ds \right)^{p/q} dx - c^p \left(\int_{\mathbb{R}^2} |u(0, t, x)|^2 dx \right)^{p/2}$$

where $u : \mathbb{R} \times (0, \infty) \times \mathbb{R}^d \rightarrow \mathbb{C}$ satisfies the equations

$$\frac{\partial u}{\partial t} = i \frac{\partial u}{\partial s} = \Delta_x u.$$
Can we remove the arithmetic condition on p, q?

Yes, but at a fairly large cost:

Theorem

If (p, q, d) are Schrödinger admissible then there exists a constant $c \geq C_{p,q}$ such that

$$t \mapsto c^p \| e^{t\Delta} f \|_{L^2(\mathbb{R}^d)}^p - \| e^{is\Delta} e^{t\Delta} f \|_{L^p_s L^q_x(\mathbb{R} \times \mathbb{R}^d)}^p$$

is nonincreasing.

Proof. Notice that this may be rewritten as the monotonicity of the expression

$$t \mapsto \int_{\mathbb{R}} \left(\int_{\mathbb{R}^2} |u(s, t, x)|^q ds \right)^{p/q} dx - c^p \left(\int_{\mathbb{R}^2} |u(0, t, x)|^2 dx \right)^{p/2}$$

where $u : \mathbb{R} \times (0, \infty) \times \mathbb{R}^d \to \mathbb{C}$ satisfies the equations

$$\frac{\partial u}{\partial t} = i \frac{\partial u}{\partial s} = \Delta_x u.$$
Taking a Strichartz angle on Kakeya (and more general X-ray) problems means looking at the kinetic transport equation:

$$\partial_s f(s, x, v) + v \cdot \nabla_x f(s, x, v) = 0, \quad f(0, x, v) = f^0(x, v)$$

for \((s, x, v) \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d\).
Taking a Strichartz angle on Kakeya (and more general X-ray) problems means looking at the *kinetic transport equation*:

$$\partial_s f(s, x, v) + v \cdot \nabla_x f(s, x, v) = 0, \quad f(0, x, v) = f^0(x, v)$$

for \((s, x, v) \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d\).

It is easy to see that the “velocity average” (aka “macroscopic density”)

$$\rho(f^0)(s, x) := \int_{\mathbb{R}^d} f(s, x, v) dv = \int_{\mathbb{R}^d} f^0(x - vs, v) dv$$

satisfies dispersive and Strichartz estimates very much like \(|u|^2\), where \(u\) solves the Schrödinger equation.
The kinetic transport equation - observations

Taking a Strichartz angle on Kakeya (and more general X-ray) problems means looking at the kinetic transport equation:

$$\partial_s f(s, x, v) + v \cdot \nabla_x f(s, x, v) = 0, \quad f(0, x, v) = f^0(x, v)$$

for $$(s, x, v) \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d$$.

It is easy to see that the “velocity average” (aka “macroscopic density”) $$\rho(f^0)(s, x) := \int_{\mathbb{R}^d} f(s, x, v)dv = \int_{\mathbb{R}^d} f^0(x - vs, v)dv$$ satisfies dispersive and Strichartz estimates very much like $$|u|^2$$, where $$u$$ solves the Schrödinger equation. Indeed

$$\|\rho(f^0)\|_{L^q_x L^p_x} \lesssim \|f^0\|_{L^a_x, v},$$

if and only if

$$q > a, \quad p \geq a, \quad \frac{2}{q} = d\left(1 - \frac{1}{p}\right), \quad \frac{1}{a} = \frac{1}{2} \left(1 + \frac{1}{p}\right); \quad \text{ (“transport admissible”).}$$

Taking a Strichartz angle on Kakeya (and more general X-ray) problems means looking at the *kinetic transport equation*:

\[
\partial_s f(s, x, v) + v \cdot \nabla_x f(s, x, v) = 0, \quad f(0, x, v) = f^0(x, v)
\]

for \((s, x, v) \in \mathbb{R} \times \mathbb{R}^d \times \mathbb{R}^d\).

It is easy to see that the “velocity average” (aka “macroscopic density”)

\[
\rho(f^0)(s, x) := \int_{\mathbb{R}^d} f(s, x, v) \, dv = \int_{\mathbb{R}^d} f^0(x - vs, v) \, dv
\]

satisfies dispersive and Strichartz estimates very much like \(|u|^2\), where \(u\) solves the Schrödinger equation. Indeed

\[
\|\rho(f^0)\|_{L^q_s L^p_x} \lesssim \|f^0\|_{L^a_{x,v}},
\]

if and only if

\[
quadratic_expression
dq_expression
\]

Due to Castella–Perthame 1996, Keel–Tao 1997, B–Bez–Gutiérrez–Lee 2013; sharp forms when \(p = q = \frac{d+2}{d}\) (Drouot 2010; see also Flock 2013).
From a monotonicity point of view it is natural to consider the sharp inequality of Drouot:

$$\| \rho(f^0) \|_{L^{\frac{d+2}{d}}_{s,x}} \leq C \| f^0 \|_{L^{\frac{d+2}{d+1}}_{x,y}},$$
From a monotonicity point of view it is natural to consider the sharp inequality of Drouot:

\[\| \rho(f^0) \|_{L^{d+2}_{s,x}} \leq C \| f^0 \|_{L^{d+1}_{x,v}} \]

By duality this is equivalent to

\[\| \rho^*(g) \|_{L^{d+2}_{x,v}} \leq C \| g \|_{L^{d+2}_{s,x}} \]

where

\[\rho^*(g)(x, v) = \int_{\mathbb{R}} g(s, x + vs) ds, \]

which is space-time X-ray transform.
From a monotonicity point of view it is natural to consider the sharp inequality of Drouot:

$$\| \rho(f^0) \|_{L^d_{s,x}} \leq C \| f^0 \|_{L^{d+1}_{x,v}}$$

By duality this is equivalent to

$$\| \rho^*(g) \|_{L^{d+2}_{x,v}} \leq C \| g \|_{L^{d+2}_{s,x}}$$

where

$$\rho^*(g)(x, v) = \int_{\mathbb{R}} g(s, x + vs) ds,$$

which is space-time X-ray transform. Flock (2013) showed that

$$g(s, x) = \frac{1}{1 + s^2 + |x|^2}$$

is, up to symmetries, the unique extremiser.
From a monotonicity point of view it is natural to consider the sharp inequality of Drouot:

$$\|\rho(f^0)\|_{L^{d+2}_{s,x}} \leq C\|f^0\|_{L^{d+1}_{x,v}}$$

By duality this is equivalent to

$$\|\rho^*(g)\|_{L^{d+2}_{x,v}} \leq C\|g\|_{L^{d+2}_{s,x}}$$

where

$$\rho^*(g)(x, v) = \int_{\mathbb{R}} g(s, x + vs)ds,$$

which is space-time X-ray transform. Flock (2013) showed that

$$g(s, x) = \frac{1}{1 + s^2 + |x|^2}$$

is, up to symmetries, the unique extremiser - this excludes classical heat flow,
From a monotonicity point of view it is natural to consider the sharp inequality of Drouot:

$$\|\rho(f^0)\|_{L_{s,x}^{d+2}} \leq C\|f^0\|_{L_{x,v}^{d+1}}^{d+2},$$

By duality this is equivalent to

$$\|\rho^*(g)\|_{L_{x,v}^{d+2}} \leq C\|g\|_{L_{s,x}^{d+2}}^{d+2},$$

where

$$\rho^*(g)(x,v) = \int_{\mathbb{R}} g(s, x + vs)ds,$$

which is space-time X-ray transform. Flock (2013) showed that

$$g(s, x) = \frac{1}{1 + s^2 + |x|^2}$$

is, up to symmetries, the unique extremiser - this excludes classical heat flow, but there is some evidence to suggest that certain faster diffusions, such as

$$\partial_t u = \Delta(\varphi(u)),$$

for certain slowly-growing functions φ, may be suitable...
Consider a more general space-time k-plane transform

$$\rho_k^*(g)(x, v) = \int_{\mathbb{R}^k} g(s, x + vs)ds,$$

where $x \in \mathbb{R}^{d+1-k}$ and v is a $(d+1-k) \times k$ matrix.
Consider a more general space-time k-plane transform

$$\rho_k^*(g)(x, v) = \int_{\mathbb{R}^k} g(s, x + vs) ds,$$

where $x \in \mathbb{R}^{d+1-k}$ and v is a $(d + 1 - k) \times k$ matrix.

Christ/Flock: $\|\rho_k^*(g)\|_{L_{x,v}^{d+2}} = C \|T_{k,d+1}(g)\|_{L_{x,v}^{d+2}(\mathcal{G}_{k,d+1})}$ where $T_{k,n}$ is the classical k-plane transform on \mathbb{R}^n.
Consider a more general space-time k-plane transform

$$\rho^*_k(g)(x, v) = \int_{\mathbb{R}^k} g(s, x + vs) ds,$$

where $x \in \mathbb{R}^{d+1-k}$ and v is a $(d + 1 - k) \times k$ matrix. Christ/Flock: $\|\rho^*_k(g)\|_{L^{d+2}_{x,v}} = C \|T_{k,d+1}(g)\|_{L^{d+2}_{x,v}(G_{k,d+1})}$ where $T_{k,n}$ is the classical k-plane transform on \mathbb{R}^n:

$$T_{k,n}(g)(\pi) = \int_{\pi} g, \quad \pi \in G_{k,n}.$$
Consider a more general space-time k-plane transform

$$
\rho^*_k(g)(x, v) = \int_{\mathbb{R}^k} g(s, x + vs) ds,
$$

where $x \in \mathbb{R}^{d+1-k}$ and v is a $(d + 1 - k) \times k$ matrix.

Christ/Flock: $\|\rho^*_k(g)\|_{L^{d+2}_{x,v}} = C \|T_{k,d+1}(g)\|_{L^{d+2}_{x,v}(G_{k,d+1})}$ where $T_{k,n}$ is the classical k-plane transform on \mathbb{R}^n:

$$
T_{k,n}(g)(\pi) = \int_{\pi} g, \quad \pi \in G_{k,n}.
$$

Let

$$
\mathcal{F}(g) = c \|g\|_{L^p(\mathbb{R}^{d+1})}^q - \|T_{k,d+1}g\|_{L^q(G_{k,d+1})}^q.
$$
Consider a more general space-time k-plane transform

$$\rho_k^*(g)(x, v) = \int_{\mathbb{R}^k} g(s, x + vs) ds,$$

where $x \in \mathbb{R}^{d+1-k}$ and v is a $(d + 1 - k) \times k$ matrix.

Christ/Flock: $\|\rho_k^*(g)\|_{L_x^d, v^2} = C \|T_{k,d+1}(g)\|_{L_x^d, v^2(G_{k,d+1})}$ where $T_{k,n}$ is the classical k-plane transform on \mathbb{R}^n:

$$T_{k,n}(g)(\pi) = \int_{\pi} g, \quad \pi \in G_{k,n}.$$

Let

$$\mathcal{F}(g) = c \|g\|_{L^p(\mathbb{R}^{d+1})}^q - \|T_{k,d+1}g\|_{L^q(G_{k,d+1})}^q.$$

Observation

Suppose $d > 1$, $q = k = 2$, $p = \frac{2(d+1)}{d+3}$. If u satisfies

$$\partial_t u = \Delta\left(u^{p/2}\right)$$

then $t \mapsto \mathcal{F}(u(t, \cdot))$ is nonincreasing.
Proof. Just a combination of the fact

\[\| T_{2,n}(g) \|_{L^2(G_{2,n})}^2 = C \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{g(x)g(y)}{|x-y|^{n-2}} \, dx \, dy \]

(\text{Drury})

and the HLS monotonicity theorem of Carlen–Carrillo–Loss.
Final remark: multilinear Kakeya as a Strichartz estimate

Suppose v_1^0, \ldots, v_{d+1}^0 are fixed nonco-hyperplanar points in \mathbb{R}^d.
Suppose v^0_1, \ldots, v^0_{d+1} are fixed nonco-hyperplanar points in \mathbb{R}^d. For each $1 \leq \ell \leq d + 1$, take a measure μ_ℓ on \mathbb{R}^d supported in a small neighbourhood of v^0_ℓ. Let the macroscopic density $\rho_\ell(f_\ell)$ be given by

$$\rho_\ell(f_\ell)(s, x) = \int_{\mathbb{R}^d} f_\ell(s, x, v_\ell) d\mu_\ell(v_\ell).$$

Endpoint multilinear Kakeya inequality of Guth:

$$\int_{\mathbb{R}} \int_{\mathbb{R}^d} \prod_{\ell=1}^{d+1} \rho_\ell(f_\ell)(s, x)^{1/d} dx ds \lesssim \prod_{\ell=1}^{d+1} \|f_\ell\|_{L_{x,v}^1}^{1/d}.$$
Final remark: multilinear Kakeya as a Strichartz estimate

Suppose v_1^0, \ldots, v_{d+1}^0 are fixed nonco-hyperplanar points in \mathbb{R}^d. For each $1 \leq \ell \leq d + 1$, take a measure μ_ℓ on \mathbb{R}^d supported in a small neighbourhood of v_ℓ^0. Let the macroscopic density $\rho_\ell(f_\ell)$ be given by

$$
\rho_\ell(f_\ell)(s, x) = \int_{\mathbb{R}^d} f_\ell(s, x, v_\ell) d\mu_\ell(v_\ell).
$$

Endpoint multilinear Kakeya inequality of Guth:

$$
\int_{\mathbb{R}} \int_{\mathbb{R}^d} \prod_{\ell=1}^{d+1} \rho_\ell(f_\ell)(s, x)^{1/d} \, dx ds \lesssim \prod_{\ell=1}^{d+1} \|f_\ell\|_{L_x^1(v_\ell)}^{1/d}.
$$

If the $\mu_\ell = \delta_{v_\ell^0}$ then this is the Loomis–Whitney inequality, and choosing heat kernels $H_{t,j}$ appropriately, we find that (see B–Carbery–Christ–Tao 2008)

$$
t \mapsto \int_{\mathbb{R}} \int_{\mathbb{R}^d} \left(\prod_{j=1}^{d+1} H_{j,t} \ast f_j(s, x, v_j^0) \right)^{1/d} \, dx ds
$$

is nondecreasing.
Final remark: multilinear Kakeya as a Strichartz estimate

Suppose \(v_1^0, \ldots, v_{d+1}^0 \) are fixed nonco-hyperplanar points in \(\mathbb{R}^d \). For each \(1 \leq \ell \leq d + 1 \), take a measure \(\mu_\ell \) on \(\mathbb{R}^d \) supported in a small neighbourhood of \(v_\ell^0 \). Let the macroscopic density \(\rho_\ell(f_\ell) \) be given by

\[
\rho_\ell(f_\ell)(s, x) = \int_{\mathbb{R}^d} f_\ell(s, x, v_\ell) d\mu_\ell(v_\ell).
\]

Endpoint multilinear Kakeya inequality of Guth:

\[
\int_\mathbb{R} \int_{\mathbb{R}^d} \prod_{\ell=1}^{d+1} \rho_\ell(f_\ell)(s, x)^{1/d} \, dx \, ds \lesssim \prod_{\ell=1}^{d+1} \|f_\ell\|_{L^1_{x,v}}^{1/d}.
\]

If the \(\mu_\ell = \delta_{v_\ell^0} \) then this is the Loomis–Whitney inequality, and choosing heat kernels \(H_{t,j} \) appropriately, we find that (see B–Carbery–Christ–Tao 2008)

\[
t \mapsto \int_\mathbb{R} \int_{\mathbb{R}^d} \left(\prod_{j=1}^{d+1} H_{j,t} * f_j(s, x, v_j^0) \right)^{1/d} \, dx \, ds
\]

is nondecreasing. The following theorem is the product of a perturbative analysis of this fact.
Theorem (B–Carbery–Tao 2006)

Suppose $p > 1/d$. Then provided the supports of the measures μ_ℓ are sufficiently small, the quantity

$$Q_p(t) := \int_\mathbb{R} \int_\mathbb{R}^d \left(\prod_{j=1}^{d+1} H_{j,t} \ast \rho_j(f_j)(s,x) \right)^p dx ds \equiv \int_\mathbb{R} \int_\mathbb{R}^d \left(\prod_{j=1}^{d+1} \rho_j(H_{j,t} \ast f_j)(s,x) \right)^p dx ds$$

is approximately monotone in the sense that $Q_p(t) \lesssim Q_p(t')$ whenever $0 < t \leq t'$.

Rescaling we see that

$$Q_p(t^{-2}) = \int_\mathbb{R} \int_\mathbb{R}^d \left(\prod_{j=1}^{d+1} \int_\mathbb{R}^d \int_\mathbb{R}^d e^{-\langle A_j(x-ty_j-sv_j),(x-ty_j-sv_j)\rangle} f_j(y_j,v_j) dy_j d\mu_j(v_j) \right)^p dx ds$$

which reveals a “double transport” ingredient, where s and t take somewhat similar roles prior to the s integration.
Theorem (B–Carbery–Tao 2006)

Suppose $p > 1/d$. Then provided the supports of the measures μ_ℓ are sufficiently small, the quantity

$$Q_p(t) := \int_\mathbb{R} \int_{\mathbb{R}^d} \left(\prod_{j=1}^{d+1} H_{j,t} \ast \rho_j(f_j)(s,x) \right)^p dx ds \equiv \int_\mathbb{R} \int_{\mathbb{R}^d} \left(\prod_{j=1}^{d+1} \rho_j(H_{j,t} \ast f_j)(s,x) \right)^p dx ds$$

is approximately monotone in the sense that $Q_p(t) \lesssim Q_p(t')$ whenever $0 < t \leq t'$.

Rescaling we see that

$$Q_p(t^{-2}) = \int_\mathbb{R} \int_{\mathbb{R}^d} \left(\prod_{j=1}^{d+1} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} e^{-\langle A_j(x-ty_j-sv_j), (x-ty_j-sv_j) \rangle} f_j(y_j, v_j) dy_j d\mu_j(v_j) \right)^p dx ds$$

which reveals a “double transport” ingredient, where s and t take somewhat similar roles prior to the s integration.

Question: is there a suitable diffusion for endpoint multilinear Kakeya?