1. Let \(M = \{ u \in C([0, 1]) : \int_0^{1/2} u - \int_{1/2}^1 u = 1 \} \) and \(I : M \to \mathbb{R} \) given by \(I(u) = \|u\|_\infty \).

 (i) Show that \(\inf_{u \in M} I(u) = 1. \)

 (ii) Show that there is no function \(u \in M \) such that \(I(u) = 1. \)

 The problem is that this space is not reflexive.

2. Let \(M \) the convex closed subset of \(H^1([0, 1]) \) given by \(M = \{ u \in H^1([0, 1]) : u(0) = 1, u(1) = 0 \} \). Consider the functional \(I : M \to \mathbb{R} \) defined by \(I(u) = \int_0^1 x |u'(x)|^2 dx. \)

 (i) Show that \(\inf_{u \in M} I(u) = 0. \)

 (ii) Show that there does not exist any \(u \in M \) such that \(I(u) = 0. \)

 In this case the problem is that the functional is not coercive.

3. Let \(\Omega \subset \mathbb{R}^N \) be a bounded domain with smooth boundary, let \(\beta : \mathbb{R} \to \mathbb{R} \) be a smooth function such that there exist \(a \) and \(b \) such that

 \[0 < a \leq \beta'(z) \leq b \quad \text{for all } z \in \mathbb{R}, \]

 and \(f \in L^2(\Omega) \).

 (i) Define a concept of weak solution for the nonlinear problem

 \[-\Delta u = f \quad \text{en } \Omega, \quad \partial u/\partial n + \beta(u) = 0 \quad \text{in } \partial \Omega. \]

 (ii) Prove that there exists a weak solution (and is unique).

4. Let \(\Omega \subset \mathbb{R}^N \) be a bounded domain with smooth boundary. Given \(u \in H^1(\Omega) \), we define the surface of the graphic of \(u \) by

 \[F(u) = \int_\Omega \sqrt{1 + |\nabla u|^2} \, dx. \]

 (i) Prove that the functional \(F \) is \(C^1 \) in \(H^1(\Omega) \).

 (ii) Let \(g \in H^1(\Omega) \), and \(\mathcal{A} = \{ u = g + v : v \in H^1_0(\Omega) \} \). Prove that a critical point of \(F \) in \(\mathcal{A} \) is a weak solution to the equation of minimal surfaces:

 \[\nabla \cdot \left(\frac{\nabla u}{\left(1 + |\nabla u|^2\right)^{1/2}} \right) = 0 \quad \text{en } \Omega, \quad u = g \quad \text{en } \partial \Omega. \]

 The expression on the left of this equality is \(N \)-times the mean curvature of the graphic of \(u \). Hence a minimal surface has zero mean curvature.

 (iii) Check whether or not the direct method of calculus of variations can be used to deduce existence of a minimizer of \(F \) in \(\mathcal{A} \).

 (iv) Let \(J(w) = \int_\Omega w \, dx \). Assume that \(u \) is a smooth minimizer of \(F \) in \(\mathcal{A} \cap \{ w : J(w) = 1 \} \). Show that the graphic of \(u \) is a minimal surface with constant mean curvature.
5. Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with smooth boundary. Consider the eigenvalue problem for the bi-harmonic operator with Dirichlet boundary conditions,

$$\Delta^2 u = \lambda u \quad \text{en} \quad \Omega, \quad u = \partial u / \partial n = 0 \quad \text{in} \quad \partial \Omega.$$

Show that there exists a non-trivial weak solution (λ, u) to the problem when $\lambda > 0$.

6. Let $f \in L^2(\Omega)$. Show that there exists a unique minimizer u of

$$J(w) = \int_{\Omega} \left(\frac{1}{2} |\nabla w|^2 - f w \right)$$

in $\mathcal{A} = \{w \in H^1_0(\Omega) : |\nabla w| \leq 1 \text{ a.e.} \}$. Show that

$$\int_{\Omega} \nabla u \cdot \nabla (w - u) \geq \int_{\Omega} f(w - u) \quad \text{for all} \ w \in \mathcal{A}.$$