I.- Introduction.

Given a square free positive integer \(d \) one may consider the arithmetical function \(r_d(n) = \# \{ n = x^2 + dy^2/x, y \in \mathbb{Z} \} \) which can also be described as the number of lattice points on the ellipse \(x^2 + dy^2 = n \) and it has a natural interpretation inside the ring of algebraic integers of the field \(\mathbb{Q}(\sqrt{-d}) \). The main purpose of this paper is to analyse closely this function in connection with the distribution of lattice points on “small arcs” of those ellipses.

Let us denote by \(h_2 \) the number of elements of order two in the class field group of \(\mathbb{Q}(\sqrt{-d}) \), then we may state our main result:

Theorem 1. On the ellipse \(x^2 + dy^2 = n \), an arc of length \(n^{\frac{1}{4} - \frac{1}{8}} \) contains, at most, \(m \) lattice points.

In other words, for every \(\epsilon > 0 \), there exists a finite constant \(C_\epsilon \) such that given an arc of length \(n^{\frac{1}{4} - \epsilon} \) on the ellipse \(x^2 + dy^2 = n \) it contains no more than \(C_\epsilon \) lattice points. The particular case \(m = h_2 + 2 \), which corresponds to arcs of length \(n^{\frac{1}{8}} \) is not difficult to prove by geometric arguments based on curvature considerations. However, the general case is of a much more intricate arithmetical nature.

Similarly to the case of gaussian integers one has estimates of the form \(r_d(n) = O(n^\epsilon) \) and \(\limsup_{n \to \infty} \frac{r_d(n)}{(\log n)^\epsilon} = \infty \) for every \(\epsilon > 0 \). Therefore, in view of the theorem, one may asks what happens for arcs whose length is \(n^{\alpha} \), \(\frac{1}{2} > \alpha \).
\(\alpha \geq \frac{1}{4} \); this remains an open question which we have not been able to answer with the methods introduced to prove theorem 1. There is a relationship between upper bounds estimates for lattice points on arcs, restriction lemmas of Fourier series and integrals and \(L^p \)-properties of certain gaussian sums (see [1], [2],[7],[10],[11] and [12]). The existence of this connection has stimulated this research whose first published result [1] contains the case \(d = -1 \).

Another interesting question is to analyse how “well distributed” are the lattice points on these ellipses when \(r_d(n) \) is large enough. In the next theorem we answer that question in the following sense: we consider the quantity \(D_d(n) = S_d(n)/(\pi n \sqrt{d}) \), for \(r_d(n) \geq 4 \), where \(S_d(n) \) denotes the area of the polygon whose vertexes are the lattice points on the ellipse \(x^2 + dy^2 = n \). Clearly these lattice points will be “better distributed” if \(D_d(n) \) is close enough to the number 1. We have the following theorem

Theorem 2.

a) \(|D_d(n) - 1| << e^{12 \sqrt{d}} \left(\frac{\log \log n}{\log n} \right)^2 \) for infinitely many integers \(n \).

b) For every \(\epsilon > 0 \) and for every integer \(k \), there exists an ellipse \(x^2 + dy^2 = n \) such that all its lattice points are placed on the arcs \(|y| < \epsilon \) and the number of them is greater than \(k \).

c) The set \(\{D_d(n), r_d(n) \geq 4 \} \) is dense in the interval

\[
\begin{cases}
[\frac{2}{\pi}, 1] & \text{if } d = 1 \\
[\frac{3\sqrt{3}}{2\pi}, 1] & \text{if } d = 3 \\
[0, 1] & \text{for } d \neq 1, 3.
\end{cases}
\]

In general one cannot expect a much better estimate than a) because it is easy to show that \(|D_d(n) - 1| >> \frac{1}{d r_d^2(n)} \), and it is a well known that \(r_d(n) = O(n^\epsilon) \) for every \(\epsilon > 0 \).

Obviously estimates a) and b) yield respectively

\[
\limsup_{n \to \infty} \frac{S_d(n)}{\pi n \sqrt{d}} = 1, \quad \liminf_{r_d(n) \geq 4} \frac{S_d(n)}{\pi n \sqrt{d}} = 0
\]
II.- Proofs.

[A] Preliminary results and notation.

For the sake of simplicity we shall discuss the details when \(d \not\equiv -1 \pmod{4} \). The straightforward modifications of the arguments to cover the case \(d \equiv -1 \pmod{4} \) are left to the reader.

To each representation \(n = a^2 + db^2 \) we shall associate the lattice point \((a, b)\) on the ellipse \(x^2 + dy^2 = n \), the point \((a, b\sqrt{-d})\) on the circle \(z^2 + w^2 = n \) and the algebraic integer \(a + b\sqrt{-d} \) in \(\mathbb{Q}(\sqrt{-d}) \) whose norm is precisely \(N(a + b\sqrt{-d}) = a^2 + db^2 = n \).

Given a rational prime \(p \) we shall consider the principal ideal \(<p> \) in the ring \(A \) of algebraic integers of the quadratic field \(\mathbb{Q}(\sqrt{-d}) \). It is well known that \(<p> \) may be a prime ideal or may have a decomposition \(<p> = \wp_1\wp_2 \) as a product of two, not necessarily different, prime ideals \(\wp_j \).

The Kronecker symbol \((d/p)\) describes the situation: \((d/p) = +1\) if \(<p> = \wp_1\wp_2, \wp_1 \neq \wp_2 \); \((d/p) = -1\) if \(<p> \) is prime and \((d/p) = 0\) if \(<p> = \wp^2 \). The fundamental theorem of arithmetic yields

\[
n = \prod_{(d/p)=-1} q_k^{\delta_k} \prod_{(d/p_j)=1 \text{ or } 0} p_j^{\alpha_j}
\]

which produces the unique factorization

\[
<n> = \prod <q_k>^{\delta_k} \prod \wp_j^{\alpha_j,1} \wp_j^{\alpha_j,2}.
\]

Obviously each representation of \(n = a^2 + db^2 \) corresponds to a decomposition of the principal ideal \(<n> = <x + y\sqrt{-d}> <x - y\sqrt{-d}> \) with norm

\[
N[<x + y\sqrt{-d}>] = N[<x - y\sqrt{-d}>] = n.
\]

In such a situation the factors must to be of the form:

\[
<x + y\sqrt{-d}> = \prod <q_k>^{\delta_k} \prod \wp_j^{\alpha_j,1} \wp_j^{\alpha_j,2},
\]

\[
<x - y\sqrt{-d}> = \prod <q_k>^{\delta_k} \prod \wp_j^{\alpha_j,1-\gamma_j} \wp_j^{\gamma_j,2}, \quad 0 \leq \gamma_j \leq \alpha_j
\]

which yields the condition that \(\delta_k = 2\beta_k \) must be even. Therefore we shall concentrate our attention in all the products

\[
\prod <q_k>^{\beta_k} \prod \wp_j^{\alpha_j-\gamma_j} \wp_j^{\gamma_j,2}, \quad 0 \leq \gamma_j \leq \alpha_j
\]
and we will characterize those among them which correspond to principal ideals.

Let us denote by \(E_1, \ldots, E_h \) the elements of the group of ideal classes in \(\mathbb{Q}(\sqrt{-d}) \) where \(E_1 = I \) is the unity i.e. the class of principal ideals. Therefore, modulo the unities of the ring \(A \), there will be as many representations of the form \(n = x^2 + dy^2 \) as sets of integers \(\gamma_j, \quad 0 \leq \gamma_j \leq \alpha_j \) such that

\[
\prod < q_k >^\beta_k \prod \varphi_j^{\gamma_j} \varphi_j^{\alpha_j} \gamma_j \in E_1
\]

that is \(\prod E_{\nu(j)}^{2\alpha_j} \gamma_j = E_1 \), where we have used \(E_{\nu(j)} \) for the class of the ideal \(\varphi_{j,1} \).

Let us denote by \(\mathcal{U} \) the number of unities of the ring \(A \), i.e.

\[
\mathcal{U} = \begin{cases}
4 & \text{if } d = 1 \\
6 & \text{if } d = 3 \\
2 & \text{in the remainder cases.}
\end{cases}
\]

and let us write the product

\[
\mathcal{U} \prod E_{\nu(j)}^{-\alpha_j} \prod \left\{ E_1 + E_{\nu(j)}^2 + \cdots + (E_{\nu(j)})^{\alpha_j} \right\} = \sum_{m=1}^{h} a_mE_m
\]

Then we have:

Lemma 3. The first coefficient \(a_1 \) is precisely the number of representations of the integer \(n \) by the quadratic form \(x^2 + dy^2 \).

Let us remark that the other coefficients have a similar interpretation in terms of lattice points on the ellipses associated to the quadratic forms corresponding to the other elements of the class group.

Corollary 4.

a) If \(h = 1 \) then \(r_d(n) = 0 \) if one of the \(\beta \)'s is odd and \(r_d(n) = \mathcal{U} \prod (1 + \alpha_j) \) if every \(\beta_j \) is even.

b) If every element of the class group, except the unity, has order two then:

\[
\begin{aligned}
\mathcal{U} \prod (1 + \alpha_j) \text{ in other case.}
\end{aligned}
\]

\[
r_d(n) = \begin{cases}
0 & \text{if there is an odd exponent } \beta_k \text{ or if } \prod E_{\nu(j)}^{\alpha_j} \neq E_1 \\
\mathcal{U} \prod (1 + \alpha_j) & \text{in other case.}
\end{cases}
\]

- There exists a finite constant \(C(d) \) such that if all the exponents \(\tilde{\beta}_k \) are even then we can find \(m \leq C(d) \) in such a way that the number \(mn \) has, at least, \(\left\lfloor \mathcal{U} \prod (1 + \alpha_j) \right\rfloor \) different representations.
The proofs of parts a) and b) are immediate. To see c) let us observe first that
\[\sum_{i=1}^{h} a_i = \mathcal{U} \prod (1 + \alpha_j) \] and, therefore, there exists \(a_i \) so that \(a_i \geq \left[\frac{\mathcal{U} \prod (1 + \alpha_j)}{h} \right] \).

If it happens that \(i = 1 \) then there is nothing to prove and we may take \(m = 1 \). If \(i \neq 1 \) then we choose a prime \(p \) so that \(<p > = \wp_1 \wp_2, \wp_1 \in E^{-1}_i \) and take \(m = p \).

[B] The angular representation.

Let \((x^s, y^s)\) be a lattice point on the ellipse \(x^2 + dy^2 = n \) with \(<\alpha^s > = <x^s + y^s \sqrt{-d}> \) as its associated principal ideal.

Using the notation introduced in the preceding section we may write:
\[<\alpha^s > = \prod <q_k > \beta_k \wp_{j,1}^{\gamma_j^s} \wp_{j,2}^{\alpha_j^s - \gamma_j^s}, \quad 0 \leq \gamma_j^s \leq \alpha_j, \]

in such a way that \(\prod E_{\nu(j)}^{2\gamma_j^s - \alpha_j} = E_1 \), where \(\wp_{j,1}, \wp_{j,2} \) will not be necessarily principal, but one can find a positive integer \(n_j / h \) such that \(E_{\nu(j)}^{n_j} = E_1 \) and, therefore, the ideals \(\wp_{j,1}^{n_j}, \wp_{j,2}^{n_j} \) became principal. That is, there exists algebraic integers \(\omega_{j,1}, \omega_{j,2} \) in the ring \(A \) so that \(\wp_{j,1}^{n_j} = <\omega_{j,1}>, \wp_{j,2}^{n_j} = <\omega_{j,2}>. \)

Let us consider the ring \(B \) of algebraic integers of the field \(\mathbb{Q}(\sqrt{-d}, \omega_{j,1}^{1/n_j}, \omega_{j,2}^{1/n_j}) \). Then we know that \(\wp_{j,1}, \wp_{j,2} \) have extensions \(\tilde{\wp}_{j,1}, \tilde{\wp}_{j,2} \) respectively, which are principal ideals in the ring \(B \). More concretely,
\[\tilde{\wp}_{j,1} = B\omega_{j,1}^{1/n_j} = <\omega_{j,1}^{1/n_j}>, \quad \tilde{\wp}_{j,2} = B\omega_{j,2}^{1/n_j} = <\omega_{j,2}^{1/n_j}> \]

which implies
\[<p_j > = Bp_j = \tilde{\wp}_{j,1}\tilde{\wp}_{j,2} = <(\omega_{j,1}\omega_{j,2})^{1/n_j}> \]

and since \(Ap_j = \tilde{\wp}_{j,1}\tilde{\wp}_{j,2} \cap A \) we may write
\[\omega_{j,1}^{1/n_j} = \sqrt{p_j e^{2\pi i \Phi_j}} \quad \omega_{j,2}^{1/n_j} = \sqrt{p_j e^{-2\pi i \Phi_j}} \]

for an appropriate angle \(\Phi_j, -\pi < \Phi_j \leq \pi \).
In general, the ideal
\[\prod < q_k >^{\beta_k} \prod \psi_{j,1}^{\gamma_j} \psi_{j,2}^{\alpha_j - \gamma_j} = < \prod q_k^{\beta_k} \prod p_{j}^{\alpha_j / 2} > e^{2\pi i \sum (2\gamma_j - \alpha_j) \phi_j} \]
is a principal ideal when considered in the ring of integers of the field \(Q(\sqrt{-d}, \omega_{1/n_1}, \omega_{1/n_1}, ...) \). However, if it happens that \(\prod E_{\nu(j)}^{2\gamma_j - \alpha_j} = E_1 \), then it is also principal in the ring \(A \) of algebraic integers of \(Q(\sqrt{-d}) \). Therefore we have proved the following.

Lemma 5. The integers \(x^s + y^s \sqrt{-d} \) corresponding to the different representations of \(n = (x^s)^2 + d(y^s)^2 \) are given by the formula:
\[
\sqrt{n} e^{2\pi i \sum \lambda_j \phi_j}
\]
where the angles \(\phi_j \) corresponds to rational primes \(p_j \) such that \((d/p_j) = 1 \) or \(0 \) and have been defined above, while the rational integers \(\lambda_j \) satisfy the relations \(-\alpha_j \leq \lambda_j \leq \alpha_j, \lambda_j \equiv \alpha_j \pmod{2}\), \(\prod E_{\nu(j)}^{\lambda_j} = E_1 \).

[C] End of the proof of Theorem 1.

Let us consider an arc \(\Gamma \) of length \(n^{\alpha/2} \), on the ellipse \(x^2 + dy^2 = n \), which contains \(m+1 \) lattice points and let \(\langle \alpha^j \rangle = < a_j + b_j \sqrt{-d} >, j = 1, \ldots, m+1 \) be the corresponding principal ideals. To each pair of them \(\langle \alpha^s \rangle, \langle \alpha^t \rangle \) we may associate the angle
\[
\Psi^{s,t} = \frac{1}{2} \left\{ \sum_j \lambda_j^s \phi_j - \sum_j \lambda_j^t \phi_j \right\}
\]
We have:
\[
|\Psi^{s,t}| = \sum_j \frac{\lambda_j^s - \lambda_j^t}{2} \phi_j < \sqrt{d} n^{\frac{\alpha-1}{2}}
\]
where \(\frac{\lambda_j^s - \lambda_j^t}{2} \in \mathbb{Z} \) for each \(j \) because \(\lambda_j^s \equiv \lambda_j^t \equiv \alpha_j \pmod{2} \).

The elements of the class group given by the products \(\prod_{j} E_{\nu(j)}^{\lambda_j^s - \lambda_j^t} \) have, at most, order two because
\[
\left[\prod_{j} E_{\nu(j)}^{\lambda_j^s - \lambda_j^t} \right]^2 = \prod_{j} E_{\nu(j)}^{\lambda_j^s} \prod_{j} E_{\nu(j)}^{-\lambda_j^t} = E_1^2 = E_1.
\]
Therefore, if h_2 denotes the number of elements of the class group of $Q(\sqrt{-d})$ whose order is two, then, among the products $\prod_j E_{\nu(j)}^{\lambda_j - \lambda_t^j/2}$, $2 \leq t \leq m + 1$ there are, at least, \left\lfloor \frac{m + h_2}{h_2 + 1} \right\rfloor$, which are equal.

Let us denote by I the set of those t's. For them we consider the products

$$\prod_j E_{\nu(j)}^{\lambda_j^s - \lambda_j^t} = \prod_j E_{\nu(j)}^{\lambda_j^s - \lambda_j^t} \prod_j E_{\nu(j)}^{\lambda_j^t - \lambda_t^j} = E_1.$$

for each pair $s, t \in I$.

Therefore, the angle $\sum_j \frac{\lambda_j^s - \lambda_j^t}{2} \Phi_j$ will correspond to a representation $x^2 + dy^2 = \prod_j \frac{|\lambda_j^s - \lambda_j^t|}{2}$.

The least favourable case (i.e. $y = 1$) yields the estimate:

$$\frac{\sqrt{d}}{\left(\prod p_j \frac{|\lambda_j^s - \lambda_j^t|}{2}\right)^{1/2}} < |\Psi^{s,t}| < \sqrt{d} n^{\frac{\alpha - 1}{2}}$$

which implies the inequality

$$\prod p_j \frac{|\lambda_j^s - \lambda_j^t|}{4} < n^{\frac{\alpha - 1}{2}}.$$

Our next step is to multiply all together these inequalities obtained for such pairs (s, t). We get

\begin{equation}
\prod_j p_j^{-\frac{1}{4} \sum_{s,t} |\lambda_j^s - \lambda_j^t|} \leq n^{\frac{\alpha - 1}{2} \left(\frac{m + h_2}{h_2 + 1}\right)}.
\end{equation}
Let us now recall the fact that $-\alpha_j \leq \lambda^s_j \leq \alpha_j$ and observe that in order to estimate $\sum_s |\lambda^s_j - \lambda^t_j|$ the worst possible situation occurs when half of the λ^s_j are equal to $-\alpha_j$ and the other half to α_j. Therefore

$$\sum_{s,t} |\lambda^s_j - \lambda^t_j| \leq \frac{1}{2} \alpha_j \left\{ \left[\frac{m + h_2}{h_2 + 1} \right]^2 - \delta \left(\left[\frac{m + h_2}{h_2 + 1} \right] - 1 \right) \right\}$$

where

$$\delta(a) = \begin{cases} 0 & \text{if } a \text{ is odd} \\ +1 & \text{if } a \text{ is even} \end{cases}$$

We substitute this estimate in (*) and we use the fact $\prod p_j^{\alpha_j} = \frac{n}{\prod q_k^{2\beta_k}} < n$ to finish the proof of the theorem.

[D] **Proof of theorem 2.**

We are proving the general case $d \neq 1, 3$. The particular case $d = 1$ was studied in [5] and the case $d = 3$ only needs some straightforward technical variations whose details are left to the reader.

a) For each integer k let us consider

$$n_k = \prod_{1 \leq m < k(d)} (dm^2 + 1) \quad \text{and} \quad \Phi^l = \sum_{m=1}^{l} \arctan \frac{1}{m\sqrt{d}} - \sum_{m=l+1}^{k(d)} \arctan \frac{1}{m\sqrt{d}}$$

where $k(d) = \lceil ke^{4\sqrt{d}} \rceil$.

By lemma 5, each angle $\frac{\Phi^l}{2\pi}$ determines a lattice point (a_l, b_l) on the ellipse $x^2 + dy^2 = n_k$, i.e. a point $(a_l, b_l\sqrt{d})$ on the circle $x^2 + y^2 = n_k$.

In general we don’t know if the ideals $< i\sqrt{dm} + 1 >$ are primes or not and, obviously, we can not expect that the lattice points described above are all the lattice points on the ellipse.

However, let us observe that $\Phi^l - \Phi^{l-1} = \arctan \frac{1}{l\sqrt{d}} \leq 2 \arctan \frac{1}{k\sqrt{d}}$ and

$$\sum_{k < l < k(d)} 2 \arctan \frac{1}{l\sqrt{d}} > 2\pi.$$
Then, the distance between two neighbour points on the circle is smaller than

$$2\sqrt{n_k}\arctan\frac{1}{k\sqrt{d}}.$$

The quantity $\frac{S_d(n_k)}{\pi n_k/\sqrt{d}}$ can be evaluated by the quotient $\frac{S_d'(n_k)}{\pi n_k}$ where $S_d'(n_k)$ is the area of the polygon whose vertices are the corresponding points on the circle $x^2 + y^2 = n_k$.

An easy geometric argument allows us to estimate the area $S_d''(n_k)$ of the circle's region not included in the polygon whose vertices are $\sqrt{n_k\cos\Phi}$, $k < l < k(d)$. We have

$$0 < \pi n_k - S_d'(n_k) < S_d''(n_k) <$$

$$k(d)\left(\frac{n_k}{2}(2\arctan\frac{1}{k\sqrt{d}}) - \frac{1}{2}(2\sqrt{n_k}\sin\arctan\frac{1}{k\sqrt{d}})\left(\sqrt{n_k}\cos\arctan\frac{1}{k\sqrt{d}}\right)\right) =$$

$$= k(d)n_k\left(\arctan\frac{1}{k\sqrt{d}} - \frac{1}{2}\sin(2\arctan\frac{1}{k\sqrt{d}})\right) =$$

$$= k(d)n_k\left(\arctan\frac{1}{k\sqrt{d}} - \frac{1}{2}(2\arctan\frac{1}{k\sqrt{d}} + O(\frac{1}{k^3d^2}))\right) = k(d)n_k\frac{k(d)}{k^3d^2}$$

Now, let us observe that $k(d) \gg \frac{\log n_k}{\log\log n_k}$. Then, if we divide by n_k and made the substitution $k = k(d)e^{-12\sqrt{d}}$ we obtain:

$$0 < \left|1 - \frac{S_d'(n_k)}{\pi n_k}\right| < \left(\frac{\log\log n_k}{\log n_k}\right)^2 e^{12\sqrt{d}}$$

b) In reference [5], in order to prove the theorem for $d = 1$, a result about the angular equidistribution of the primes $a + bi \in \mathbb{Z}(i)$ is used. Here we need the more general result (see, for example ref [9], pages 374-375):

Theorem A. Let h be the class-number of $\mathbb{Q}(\sqrt{-d})$. If $N(\alpha, \beta, x)$ denotes the number of prime ideals $< a + b\sqrt{-d}$ such that $\alpha < \arctan\frac{a}{b\sqrt{d}} < \beta$ and $\sqrt{a^2 + db^2} \leq x$, then

$$N(\alpha, \beta, x) = \left(\frac{(\beta - \alpha)U}{2\pi h} + o(1)\right)\frac{x}{\log x},$$

where U is the number of units of the ring of integers.
Corollary B. For each $\alpha \in [0, 2\pi)$ and for every $\epsilon > 0$, there exists an ideal prime $< a + b\sqrt{-d}>$, $a + b\sqrt{-d} = \sqrt{a^2 + db^2} e^{i\Phi}$ such that $|\Phi - \alpha| < \epsilon$.

Taking $\alpha = 0$ we can find, for each $\epsilon > 0$ and for each integer k, a prime ideal $< a_{\epsilon,k} + db_{\epsilon,k}>$ such that $|\Phi_{\epsilon,k}| < \frac{\epsilon}{k}$.

Let $n_k = \left(a_{\epsilon,k}^2 + db_{\epsilon,k}^2 \right)^k$. According with lemma 5, all the points $(a, b\sqrt{d})$ on the circle are given by the formula

$$\sqrt{n_k} e^{i\gamma\Phi_{\epsilon,k}}$$

where γ runs over the set $\{\gamma \in \mathbb{Z}; |\gamma| \leq k, \gamma \equiv k \pmod{2}\}$.

To finish the proof of b) we observe that the $r_d(n) = U(k + 1) > k$ and $|\gamma\Phi_{\epsilon,k}| < \epsilon$ in all the cases.

c) We remember that $S_d(n)/(\frac{\pi n}{\sqrt{d}}) = S'_d(n)/\pi n$. Let $\alpha \in [0, 1]$, then there exists $\beta \in (0, \frac{\pi}{4})$ such that the area of the dotted region is $\pi \alpha n_k$.

The idea is to look for circles such that the polygons with vertices in the corresponding points $(a, b\sqrt{d})$ are close enough to the region described above.

Let us consider $\frac{\beta}{2^2}, \frac{\beta}{2^3}, ..., \frac{\beta}{2^k}$ and $\epsilon = \frac{\beta}{2^2k}$. According to lemma A, for each $j = 2, 3, ..., k$ we can find a prime $a_j + \sqrt{-db_j} = \sqrt{p_j} e^{2\pi i \Phi_j}$ such that $|2\pi \Phi_j - \frac{\beta}{2^j}| < \epsilon$.

We choose $n_k = \prod_{j=2}^{k} p_j^2$. The points $(a, b\sqrt{d})$ on the circle $x^2 + y^2 = n_k$ are given by the formula

$$\sqrt{n_k}e^{2\pi i \left(\sum_{j=2}^{k} \gamma_j \Phi_j\right)}$$

where γ_j takes the values $-2, 0$ or 2.

All the integers r, $0 \leq r < 2^{k-1}$ can be written in the form

$$r = a_0(r)2^0 + a_1(r)2^1 + \cdots + a_{k-2}(r)2^{k-2}.$$

where the $a_j(r)$ takes values 0 or 1.

For every r we choose $\gamma_j^r = 2a_{k-j}(r)$ and we have

$$\sum_{j=1}^{k} \gamma_j^r \Phi_j = 2 \sum_{j=2}^{k} \frac{\beta a_{k-j}(r)2^{k-j}}{2^k} + O\left(\frac{k\beta}{2^{2k}}\right) = \frac{\beta r}{2^{k-1}} + O\left(\frac{k\beta}{2^{2k}}\right).$$

Then, for each r, $0 \leq r < 2^{k-1}$ there exists a point $(a_r, b_r\sqrt{d})$ on the circle $x^2 + y^2 = n_k$, $a_r + b_r\sqrt{-d} = \sqrt{n_k}e^{2\pi i \Phi_r}$, such that

$$|2\pi \Phi_r - \frac{\beta r}{2^{k-1}|} < \epsilon' \quad \epsilon' = \frac{k\beta}{2^{2k}}$$

Then, $|2\pi \Phi_{r-1} - 2\pi \Phi_r| < \frac{\beta}{2^{k-1}} + 2\epsilon'$, $r = 1, \ldots, 2^{k-1} - 1$ and

$$|2\pi \Phi_{2^{k-1}-1} - \beta| < \frac{\beta}{2^{k-1}} + \epsilon'.$$

Furthermore there are no lattice points on the arcs

$$\sqrt{n_k}e^{i\theta + \pi t}, \quad \beta + \epsilon < \theta < \pi - \beta - \epsilon, \quad t = 0, 1.$$

Now, with the same geometric argument used in the proof of b) and making $k \to \infty$ we obtain c).

References.

