Una mente bella

Por Antonio Córdoba

John Nash obtuvo el reconocimiento de la comunidad científica antes de cumplir los treinta años por tres trabajos extraordinarios. El primero, que le ha valido el premio Nobel de Econometría, fue su tesis doctoral. En ella introdujo el concepto de equilibrio (llamado Nash) en la teoría de juegos, que se ha convertido en un pilar básico en la formulación matemática de los modelos económicos. El segundo es un resultado fundamental en geometría: la inmersión isométrica en un espacio euclídeo de dimensión suficientemente grande. El tercero es el teorema sobre la existencia de soluciones de ecuaciones en derivadas parciales (parabólicas o elípticas), auténtica piedra de Rosetta del Análisis no lineal.

El teorema de los juegos juega principalmente en el nombre por tratar de maipúes y otros juegos de mesa, pero también en la guerra y de los mercados económicos. John von Neumann, con su método del minimax, demostró la existencia de una estrategia óptima. Pero sólo para el caso de juegos de suma cero, donde lo que un jugador gana el otro lo pierde; y con información perfecta, es decir, cuando cada jugador conoce todos los resultados posibles que están clasificados en una escala de preferencias. Habiéndose además analizado inteligentemente las alianzas y fórmulas competitivas disponibles antes de comenzar la partida.

Sin embargo, para la mayoría de las aplicaciones, las conclusiones de la teoría de von Neumann resultan ser poco realistas. Pensamos, por ejemplo, en el juego de damas en decidir si declaramos o no la guerra a una nación enemiga o si, tratándose de un banquete, llevando adelante una «opera» hostil para soborno a otra entidad financiera. No parece desestimado considerar que las pérdidas del adversario se convirtan, necesariamente, en ganancias propias.

En su tesis doctoral, realizada a los veintiún años y publicada en la revista de la Academia de Ciencias de Estados Unidos, Nash encontró una ingeniosa y elegante demostración de la existencia de una solución de equilibrio para juegos de varias personas, con la condición de suma cero ni hipótesis convexa alguna. Abrió nuevos caminos que le han valido un premio Nobel cuarenta y cinco años más tarde. Pero importante e innovador como es sin duda este resultado, creo que palidece al lado de los otros dos.

Las superfi cies aparecen en la naturaleza por doquier dentro de nuestro espacio euclídeo tridimensional. También el arte ha explotado la belleza de sus formas. Una mapa local, o una carta, es una representación plana de un trozo de superficie. Pegando juntos muchos mapas locales podemos reconstruir la superficie de partida. Aunque eso puede hacerse de maneras distintas, como hemos mostrado los cubistas. En Matemáticas existe la importante noción de variedad diferenciable que nos permite crear una variedad de distintas dimensiones. En una variedad es importante disponer de una métrica, o una medida lineal y un objeto para el ángulo. Esa estructura fue introducida por Riemann hace sesenta años. El siglo XIX y representó un hito en el desarrollo conceptual de la geometría. En las variedades riemannianas se puede estudiar la variación de funciones (magnitudes) y calcular ángulos, distancias, áreas y volúmenes. El análisis de las propiedades y la clasificación de estas variedades es objetivo central para los geómetras; cuales son las geometrías posibles del mundo real. Cuando una variedad la encontramos inmersa en un espacio euclídeo (de cualquier dimensión) podemos asignarle una métrica inducida por la distancia Euclídea. Una pregunta fundamental que se ha hecho desde el siglo XIX era la siguiente: ¿es posible medir (mesuración regular) una variedad riemanniana arbitraria en un espacio euclideo de manera que la métrica inducida por este sobre la variedad coincida con la de partida? Considerado un problema extremadamente difícil durante mucho tiempo, fue resuelto por Nash en un trabajo genial. La respuesta es afirmativa. La demostración está basada en el llamado teorema de la función implícita de Nash y representó un salto cualitativo importante sobre los métodos y modelos de pensamiento anteriores.

Los orígenes de la revolución científica

están en el desarrollo del cálculo diferencial que, desde un principio, fue un instrumento poderoso para describir las leyes de la naturaleza. Según Schoder, la transformación del cálculo de Newton, los matemáticos de la Ilustración, entre ellos Euler y Lagrange, obtuvieron las leyes en forma de ecuaciones diferenciales. Las cantidades relevantes (por ejemplo el volumen de una partícula de fluido, la tiempo que uno hace un salto o la posición de una cuerda que vibra) son funciones del espacio y del tiempo. Las leyes fundamentales, tales como la conservación de la energía, de la masa y del movimiento cinético, se expresan a modo de relaciones entre las distintas razones, o derivadas parciales, de la cantidad considerada respecto al espacio y el tiempo.

En Matemáticas estas relaciones se llaman ecuaciones en derivadas parciales y, durante mucho tiempo, ha sido el principal objetivo del diseño de una teoría para resolverlas y entender las propiedades de sus soluciones. En el caso de las ecuaciones lineales se verifica el principio de superposición: a partir de unas soluciones conocidas podemos generar muchas más, combinándolas por medio de sumas y productos o números o escalares. El análisis armónico es un método poderoso, basado en ese principio que ha servido para entender y hacer predicciones correctas en muchas teorías relevantes. Pero hay otras ecuaciones no menos importantes, y, por ejemplo, no lineales (implica traerlas con esos métodos). La mayoría de los modelos matemáticos de la vida real se basan en ecuaciones no lineales. Un ejemplo notable es la ecuación de las superficies elípticas que aparece en el sol, en las transiciones de fase y también modelos, por ejemplo, a las películas obtenidas al sacar un alambre después de haberlo sumergido en una solución jabonosa. Entre todas las superficies que se agrusan al alambre, el jabón escoge a la que minimiza el área.

J. Nash demostró la regularidad de las soluciones (conocidas como soluciones elípticas), de forma muy ingeniosa y con ideas que estaban muy lejos de los procedimientos habituales. Los que han trabajado con un matemático italiano, Ennio di Giorigi, quien consiguió otra prueba algo distinta, de manera que implica una nueva noción de superposición. Los métodos introducidos por ambos, di Giorigi y Nash, forjaron la frase que nos permite abrir la puesta del Análisis No Lineal. Y en eso andamos todavía.

Demostrar la verdad con belleza

Los teoremas de John Nash son auténticos hitos del pensamiento del siglo XXI. Tienen todos los ingredientes de dificultad, sorpresa, profundidad y utilidad en el enmarcado de las ideas que, son inherentes a toda construcción matemática genuina. Para mí es esa belleza lo que me exige algún esfuerzo a quien desee adquirirla y, de naturaleza tan clara como bien aciertan a describir los venenos de Juan Ramón Jiménez:

Mariposa de luz
La belleza se va cuando yo voy a llegar a su rosa
La mejor cosa de la vida no puede ser contada
Al final solo queda el centeno de su edad.

Así que la belleza del entendimiento mantiene un auténtico triunfo de la inteligencia humana. Pero si queremos alcanzarla probablemente debemos, en un sentido, ponerla en común como piel negra. Porque en Matemáticas lo difícil es lo único que cuenta. Y el creador auténtico se caracteriza por su decidido esfuerzo en evitar las
repeticiones y bailar de los caminos más concurridos. Dificilmente lograremos demostrar todo lo que nuestra intuición cree haber visto cuando miramos más allá de la frontera de lo conocido. Quizás las mentes menos exentigentes sean felices con las mil pequeñas variaciones de temas trillados, y consigan cierta satisfacción engordando una lista de publicaciones que in- chyan, como suele decirse, a revistas de ciert- o prestigio. Pero un genuino creador casi nun- ca está plenamente satisfecho con lo obtenido. A veces parece que sólo importa verdadera- ramente lo que no se ha logrado, lo que no se ha intentado, no de la manera que cuando miramos a ella propia, siempre ten- demos a destacar todo aquello que no hemos podido hacer.

Aunque la juventud sea un defecto que se correige con el tiempo, bien sabía Jur- silión Ponsella, suele afirmarse que las mate- máticas son un oficio de jóvenes. Y que en da- rante la edad de la arrogancia, entre los vein- te y tresenta y pocos años, cuando la men- te humana alcanza su máximo poder de in- vención. Después viene el declive, y pasados los cincuenta quedan ya pocas esperanzas de originalidad. Es la opinión melancólica de G. Hardy que siempre podríamos meditar con es- peleología, prédicas, epidemias, ignorantes, algo de cierto creo que hay detrás de esa amargura: enorme la cantidad de energía mental que es menester concentrar en la investigación ma- temática; muchas las astucias de la razón pre- cisadas para rodear las dificultades y derro- rar a los enemigos de nuestras estrategias més directas, para conseguir ese éxodo de mín con el cual todo es difumin y sin cuya colaboración nuestro trabajo se habría vestido lentamente abajo. Sólo quienes hayan estado cer- ca del mismo descubrimiento podrán distri- buir la felicidad de haber creado co- mo un relámpago y aquello que ha sido el pro- ducción de un trabajo sistemático y minucioso.

Después de un tiempo que puede resul- tar más o menos largo a veces incluso de años, de pecuegar un problema. Cuando uno se sien- te próximo a desvelar la verdad y todo parece converger. Cuando las ideas se engarzan en continuo y constante diálogo hacia la mon- taña desde la que esperamos contemplar el be- llo paisaje de nuestra teoría. ¡Qué locura! En esos momentos todo lo demás es matemática se con- vierte en un ser tan autónomo. Pasarán a un segundo plano el mundo y sus valores, la se- garidad, la amistad, incluso la familia, con tal de obtener el teoría. Pero conseguirlo es el- varse del sueño, ver a los sentidos y con- seguir verla de la más hermana. Un via- je que siempre se querer repetir.

Aunque en un mismo artista pueden dar- se en proporciones diversas, existen dos tipos claramente diferenciados: el de quien resuelve problemas difíciles y el creador de nuevas tec- rías. La trayectoria de Nash le señala in- dudablemente como miembro de la primera ca- tegoría. No obstante, lo normal es que sea el empeñarse en encontrar la solución de proble- mas concretos el que nos lleva a ampliar la li- bertad y potencia de cálculo, introducir ideas, conceptos y métodos de demostración que da- rán lugar a nuevas teorías. Eso ha ocurrido es- pecialmente en el caso que nos ocupa, con ide- as tan alejadas de las que eran habituales en tre los expertos que fueron calificados de re- vaciadores, dignos de un auténtico genio de una mente hélia. El libro que comentamos recoge testimonios felicísimos de un nutrido espectro de teoristas de más envergadura, que atesta- tan esa excepcional cualidad innovadora de las construcciones de Nash.

Pero también describen los rasgos de una personalidad arrogante, gárrula y competitiva. Que trabajaba de asegurarse siempre de que el problema resuelto estuviera suficientemente valorado, de manera que la solución reportara beneficios en prestigio, premios y reconoci- miento. Al parecer, Nash encontraba esti- mulantes los desafíos no exentos de bravatas. Después de haber obtenido su gran teoría sobre la inmersión isométrica, comenzó su con- ferencia en la Universidad de Chicago con es- ta frase: «resolvé este problema por una apues- ta». Y era cierto, como también lo era que a Nash le gustaba pensar en su problema ig- norando lo que otros matemáticos anteriores hubieran obtenido. Comenzando desde cero, sin dejarse influir por los resultados previos, y volviendo a descubrir a menudo, por sí mis- mo, lo que otros habían obtenido antes. Pero casi siempre añadiendo un punto de vista nueva- vo, un nuevo detalle en el paisaje, que le per- mitía seguir avanzando donde anteriores ex- ploradores encontraron una barrera infran- queable.

Si no fue por sus largos y penosos años de enfermedad, podríamos jugarse de patéti- co el que un creador capaz de concebir ideas y métodos revolucionarios, de hacer avanzar la ciencia y resolver algunos de sus enigmas más difíciles, mostrarse dispuesto por no haber ganado la Premiada Mathematic Competition (una especie de olimpiada matemática para alumnos de la licenciatura). O que llevara a cabo diversas maniobras de carácter deduso, respecto a la publicación de su artículo sobre las ecuaciones parabólicas, con objeto de con- seguir el premio Bôcher de la American Mathe- matical Society. En fin, si hemos abstrac- ción de las curvas perpendiculares del propio Nash, algo de ese espíritu de competi- ción, tan acertadamente descrito en la biografía que nos ocupa, si que puede ser detectado en el mundo de las matemáticas. Pero también se encuentran dosis elevadas de todo lo con- trario. En el mundo en el que todavía se man- tiene un nivel alto de exigencia acerca de lo que un resultado debe ponerse para que me- reza ser publicado. Donde los firmantes de un artículo son realmente coautores y las te- ses doctorales son, en la mayoría de los casos, trabajos realmente dirigidos y apoyados por el director, pero publicados sólo por los alu- nos autor. Y donde, en general, resulta dificul- daceducar comportamientos tan siniestros como que a veces se están en otros nichos ecológicos no demasiado alejados de las Matemáticas.

En el año 1958 tuvo lugar el congreso in- ternacional de Matemáticas en la ciudad de Edimburgo. En estos congresos, celebrados ca- da cuatro años, se entregan las medallas Fields, que son el máximo galardón para la obra rea- lizada antes de haber cumplido los cuarenta. Nash había estado entre los candidatos pe- ro, finalmente, no fue uno de los medallistas. Quizás porque aún le quedaban otras oportu- nidades, ya que acababa de cumplir la trein- tena, pero también porque su gran resultado en ecuaciones diferenciales todavía no había sido publicado y, además, era una gloria com- partida con Ennio di Giorgi. No podemos sa- ber cuánto afectó esto a su dedicada es- tabilidad mental, pero lo que sí está bien cla- ro es que para el siguiente congreso de 1962, I. Nash no estaba en condiciones de recibir pre- mio alguno. A partir del verano de 1958 su sa- lud mental fue deteriorándose hasta required tratamiento psiquiátrico. Genio y figura, durante este período al que nuestro libro dedica seis capítulos, Nash ati- cu la Hipótesis de Riemann. Se trata, pro- bablemente, del objeto del deseo matemáti- co más codiciado desde que B. Riemann, ha- cía mediados del XIX, relacionó la ubicación de los ceros de la función zeta con el cono- cimiento profundo de la distribución de los mi- nimos primos dentro de la sucesión de los si- meros enteros positivos. Si Nash tuvo, o no tu- vo, una buena idea hacia la hipótesis de Rie- man, es algo que posiblemente nunca se- bromos. Porque esos momentos se entre- mundaban con la enfermedad mental de su men- te. Pero, incluso en esos meses tan dramáticos, había escogido bien su objetivo: ¿dónde es- tarán los ceros de la función zeta? Siguiendo con- durne la cumbre más ampliada, como tratan de ex- presar los melancólicos versos de alguien que, acaso alguna vez, sobrevivió el día cada día.

Durante años persiguió el problema surnando al esfuerzo la constancia. Conjetura que ansiaba hacer teorema, quimeras en la edad de la arrogancia.

A veces creyó hecho el trabajo, mas siempre encontraba un agujero. Y todo el edificio bajo ahoga a falta de engarzar un simple cero.

Pero pronto su mente ya aprendía la lección de derrumar tan pesada. Y lo inusita otra vez con mas portero.

Suela cerro literalmente dispuestos. ¿Qué prueba tan perfecta, qué alegría? ¿Qué control de los primos y compuestos?

En las declaraciones que John Nash ha realizado después de obtener el Nobel, tan sólo lo encontramos una conexión a la nostalgia: cuando intuía que durante esos treinta años de dura enfermedad mental le hab- rían impedido descubrir.

Un trabajo bien hecho

El libro está muy bien escrito y su lectura engancha (solo he conocido una objetención: la somera y poco afortunada descripción que se hace de Ennio di Giorgi). Consta de cinco partes: una mente bella; vidas separadas; un fuego que se quema lentamente; los años per- didos; lo más valioso. En total suman más de cuatrocientas cuarenta páginas, incluyendo in- tas y bibliografía.

No extraña que haya sido galardonado por la crítica. Su autor, Sylvia Nasar, es ne- periodista del New York Times y pasó un año en Princeton, y varios meses en el M.I.T en Bos- ton, dedicada a recoger datos y entrevistar a quienes pudieran aportarlos.


Me han informado de que el propio bio- grafista considera que lo obra es una narración adecuada de los hechos de su vida. En cuan- to a la película, se trata obviamente de otro asunto y, por mi parte, no tengo nada inte- resante que decir. Quizá lo mejor sea resaltar el comentario que de ella hizo el propio Nash: «La película trata de un personaje a quien le han ocurrido ciertas cosas que son similares a las que me han ocurrido a mí. Pero no es una película sobre mí».

RESUMEN

La biografía del matemático y Premio Nobel de Economía en 1994, John Forbes Nash, introducción del concepto de equilibrio en la teoría de los juegos y cuyos teoremas son matemáticos híbridos del pensamiento del siglo XIX y de la que es autora Sylvia Nasar, se titula de escusa a Antonio Córdoba para introducir-

MATEMÁTICAS

SABER LEER

Mayo 2002. N° 155

Sofía Nasar

Una mente prodigiosa