1. Encontrar la expresión analítica de los siguientes movimientos:
 a) Giro de centro (1, 0) y ángulo $3\pi/4$.
 b) Simetría deslizante de eje paralelo a la recta $2x + y = 3$ y que transforma (2, 1) en (1, 0).
 c) Giro de ángulo $\pi/3$ que llevé (2, 1) en (1, 0).
 d) La composición de los movimientos de a) y b).

2. Estudiar los siguientes movimientos del plano, hallando su tipo, subvariedades invariantes y elementos geométricos.
 a) $M_1 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \end{pmatrix} + \begin{pmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.
 b) $M_2 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} \sqrt{2}/2 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2}/2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$.
 c) $M_3 = M_2 \circ M_1$ y $M_4 = M_1 \circ M_2$.

3. Determinar todos los movimientos que transforman (1, 0) en (2, 1) y (0, 1) en (1, 0), indicando sus elementos geométricos.

4. Averiguar todos los movimientos del plano que conmutan con la simetría de eje $x - 2y = 1$.

5. Encontrar todos los movimientos del plano que conmutan con:
 a) Traslación de vector \vec{u}_0.
 b) Giro de ángulo π y centro P_0.

6. Probar que todo movimiento del plano es la composición de tres simetrías si $|T| < 0$ y de dos simetrías si $|T| > 0$.
1. Sea \(A = (\mathbb{P}, V) \) un espacio afín de dimensión \(m \) y sean \(P_1, P_2, \ldots, P_n \in A \). Los puntos \(P_1, P_2, \ldots, P_n \) se dicen \emph{afínmente independientes} en \(A \) si el conjunto de vectores \(\{P_1P_2, \ldots, P_1P_n\} \) es linealmente independiente. Demostrar que si \(P_1, P_2, \ldots, P_n \) son puntos afínmente independientes en \(A \), para todo \(j = 2, \ldots, n \) el conjunto de vectores \(\{P_jP_1, \ldots, P_jP_{j-1}, P_jP_{j+1}, \ldots, P_jP_n\} \) es linealmente independiente.

2. Sean \(P, Q \) y \(R \) tres puntos no alineados de \(\mathbb{R}^2 \) que son puntos fijos de un movimiento \(M \). Demostrar que todos los puntos del plano \(\Gamma \) que contiene a los puntos \(P, Q \) y \(R \) son puntos fijos de \(M \).

3. Demostrar que la composición de dos reflexiones con respecto a dos planos paralelos es una traslación.

4. Demostrar que un giro con respecto a una recta \(r \) es la composición de dos reflexiones con respecto a dos planos que tienen en común la recta \(r \).

5. Demostrar que la composición de dos simetrías centrales es una traslación.

6. Sea \(S \), una simetría axial de eje \(r \) y \(T_g \) una traslación de vector \(\vec{a} \) tal que \(\vec{a} \) es perpendicular a \(r \).

 a) Demostrar que \(T_g \circ S \) es una simetría axial de eje \(l \) que es la recta trasladada de \(r \) mediante el vector \(\vec{a}/2 \).

 b) Demostrar que \(S \circ T_g \) es una simetría axial de eje \(l' \) simétrico de \(l \) con respecto a \(r \).

7. a) Demostrar que la composición de dos simetrías axiales respecto de ejes secantes es un giro.

 b) Demostrar que la composición de dos simetrías axiales respecto de ejes que se cruzan puede escribirse como la composición de un giro y una traslación.

8. Determinar todos los movimientos en el espacio que dejan fijos los puntos \(P = (1, 1, 1), Q = (1, 0, 0) \) y \(R = (-1, 1, 0) \).

9. Determinar todos los movimientos en el espacio que dejan fijos los puntos \(P = (1, 1, 0) \) y \(Q = (1, 1, 1) \) y llevan \(H = (1, 0, 1) \) en \(H' = (0, 1, 1) \).

10. a) Demostrar que si \(\pi \) y \(\Gamma \) son dos planos perpendiculares en el espacio, \(S_\pi \circ \Gamma = \Gamma \circ S_\pi \).

 b) Dar un ejemplo de dos planos \(\pi \) y \(\Gamma \), en el espacio, para los que la igualdad \(S_\pi \circ \Gamma = \Gamma \circ S_\pi \) no sea cierta.

11. Sean \(\Gamma_0 \colon \{x = 0\}, \Gamma_1 \colon \{x = 1\}, \pi_0 \colon \{y = 0\}, \pi_1 \colon \{y = 1\}, \Delta_0 \colon \{z = 0\}, \Delta_1 \colon \{z = 1\} \) los planos que contienen a las caras de un cubo de lado 1 en \(\mathbb{R}^3 \), Determinar qué movimientos son las siguientes composiciones de reflexiones:

 a) \(S_{\Gamma_1} \circ S_{\pi_1} \circ S_{\Gamma_0} \)

 b) \(S_{\Gamma_1} \circ S_{\pi_1} \circ S_{\Delta_1} \)

 c) \(S_{\Gamma_0} \circ S_{\pi_0} \circ S_{\Gamma_1} \circ S_{\pi_1} \)

12. a) Demostrar que si \(\pi, \Gamma \) y \(\Delta \) son tres planos en el espacio que son perpendiculares entre sí, \(S_\pi \circ S_\Gamma \circ S_\Delta \) es una simetría con respecto a un punto.

 b) Sean \(\pi \colon \{2x - y + z = 3\}, \Gamma \colon \{x - y - 3z = -2\}, \Delta \colon \{x - 2z = -1\} \) tres planos en \(\mathbb{R}^3 \). ¿Qué tipo de movimiento es \(S_\pi \circ S_\Gamma \circ S_\Delta \)?
EJERCICIOS (Secciones 10.8 y 10.9)

1. Hallar la expresión analítica de los siguientes movimientos en el espacio:
 a) Simetría respecto al plano $3x - y + 2z = 1$.
 b) Movimiento helicoidal respecto al eje $(\lambda(1, -1, 0); \lambda \in \mathbb{R})$ con un giro de 180° y vector de traslación $\vec{v} = (2, -2, 0)$.
 c) Giro cuyo eje pasa por $(1, 1, 0)$ y $(0, 0, 1)$ y que envía $(0, 0, 0)$ en $(1, 1, 1)$.
 d) Composición de los movimientos a) y b).

2. Estudiar los siguientes movimientos en el espacio, hallando su tipo, subvariedades invariantes y elementos geométricos:
 a) $M_1 \begin{cases} x' & = & 1 \\ y' & = & -1 \\ z' & = & 0 \end{cases} + \begin{pmatrix} 1/2 & \sqrt{2}/2 & 1/2 \\ \sqrt{2}/2 & 0 & -\sqrt{2}/2 \\ 1/2 & -\sqrt{2}/2 & 1/2 \end{pmatrix} \begin{cases} x \\ y \\ z \end{cases}$
 b) $M_2 \begin{cases} x' & = & 1 \\ y' & = & 0 \\ z' & = & 0 \end{cases} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix} \begin{cases} x \\ y \\ z \end{cases}$
 c) $M_3 \begin{cases} x' & = & 2 \\ y' & = & 0 \\ z' & = & 0 \end{cases} + \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{cases} x \\ y \\ z \end{cases}$
 d) La composición $M_3 \circ M_2$ y $M_2 \circ M_3$.

3. Hallar los movimientos del espacio que conmutan con la simetría respecto del plano $z = 0$.

4. Dado el movimiento helicoidal
 $M \begin{cases} x' & = & 2 \\ y' & = & 1 \\ z' & = & 0 \end{cases} + \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix} \begin{cases} x \\ y \\ z \end{cases}$
 hallar su descomposición canónica como composición de un giro con una traslación del vector paralelo al eje de giro.

5. a) Dados los planos paralelos π_1 y π_2 de ecuaciones $\pi_1: x + y = 1$ y $\pi_2: x + y = 4$, encontrar las ecuaciones del movimiento $M = S_{\pi_2} \circ S_{\pi_1}$. Demostrar que M es una traslación y encontrar su vector de traslación.
 b) Demostrar que para cualesquiera dos planos paralelos π_1 y π_2 en \mathbb{R}^3, $M = S_{\pi_2} \circ S_{\pi_1}$ es una traslación; encontrar el vector de traslación.

6. a) Dados los planos π_1 y π_2 de ecuaciones $\pi_1: z = 1$ y $\pi_2: x + y - z = 2$, encontrar las ecuaciones de $M = S_{\pi_1} \circ S_{\pi_2}$. Demostrar que M es un giro con respecto a un eje y el ángulo de giro.
 b) ¿Qué relación existe entre el eje del giro M y los planos π_1 y π_2?
 c) ¿Qué relación existe entre el ángulo de giro de M y el ángulo que forman π_1 y π_2?

7. Sean T, $C \in M_{n \times n}(\mathbb{K})$ con $|C| \neq 0$. Demostrar que si $J = C^{-1}TC$, traza $(J) = traza (T)$. [Sugerencia: si $p_T(\lambda) = -\lambda^3 + a_2\lambda^2 - a_1\lambda + a_0$ es el polinomio característico de T, demostrar que $a_2 = traza (T)$; utilizar a continuación que $p_T(\lambda)$ es invariante mediante un cambio de base].