Isomorphism Classes of Elliptic Curves Over a Finite Field in Some Thin Families

Javier Cilleruelo
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM)
and
Departamento de Matemáticas, Universidad Autónoma de Madrid
Madrid, 28049, España
franciscojavier.cilleruelo@uam.es

Igor E. Shparlinski
Department of Computing, Macquarie University
Sydney, NSW 2109, Australia
igor.shparlinski@mq.edu.au

Ana Zumalacárregui
Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM)
and
Departamento de Matemáticas, Universidad Autónoma de Madrid
Madrid, 28049, España
ana.zumalacarregui@uam.es

Abstract

We give a non trivial upper bound for the number of elliptic curves $E_{r,s} : Y^2 = X^3 + rX + s$ with $(r, s) \in [R + 1, R + M] \times [S + 1, S + M]$ that are isomorphic to a given curve. We also give an almost optimal lower bound for the number of distinct isomorphic classes represented by elliptic curves $E_{r,s}$ with the coefficients r, s lying in a small box.
1 Background

For a prime p we consider the family of elliptic curves $E_{a,b}$ given by a Weierstrass equation

$$E_{a,b} : \quad Y^2 = X^3 + aX + b$$

over the finite field \mathbb{F}_p of p elements, where

$$(a, b) \in \mathbb{F}_p^2, \quad 4a^3 + 27b^2 \neq 0. \quad (1)$$

Two curves $E_{r,s}$ and $E_{u,v}$ are isomorphic if for some $t \in \mathbb{F}_p^*$ we have

$$rt^4 \equiv u \pmod{p} \quad \text{and} \quad st^6 \equiv v \pmod{p}. \quad (2)$$

There are several works which count the number of curves $E_{r,s}$ isomorphic to a given curve $E_{a,b}$ with coefficients in r, s is a given box $(r, s) \in [R + 1, R + K] \times [S + 1, S + L]$, see [2, 8]. In particular, for

$$KL \geq p^{3/2 + \varepsilon} \quad \text{and} \quad \min\{K, L\} \geq p^{1/2 + \varepsilon} \quad (3)$$

with some fixed $\varepsilon > 0$, using the exponential sum technique, Fouvry and Murty [8] have obtained an asymptotic formula for every pair (a, b) with (1). In [2], using bounds of multiplicative character sum, for almost all (a, b) with (1), this condition (3) has been relaxed as

$$KL \geq p^{1+\varepsilon} \quad \text{and} \quad \min\{K, L\} \geq p^{1/4+\varepsilon}.$$

Furthermore, it is shown in [2], that for

$$KL \geq p^{1+\varepsilon} \quad \text{and} \quad \min\{K, L\} \geq p^{1/4+\varepsilon}$$

one can get a lower bound on the right order of magnitude (again for almost all (a, b) with (1)). On average over p, such results are established for even smaller boxes, see [2].

Here we consider much smaller boxes and obtain a lower bound on the number $I(R, S; M)$ of nonisomorphic curves $E_{r,s}$ with coefficients in r, s is a given box $(r, s) \in [R + 1, R + M] \times [S + 1, S + M]$.

Clearly, the congruences (2) imply that

$$r^3v^2 \equiv u^3s^2 \pmod{p} \quad (4)$$

2
So, given integers \(R, S \) and \(M \geq 1 \), we denote by \(T(R, S; M) \) the number of solutions to (4) with
\[
(r, s), (u, v) \in [R + 1, R + M] \times [S + 1, S + M].
\]
Furthermore, for \(\lambda \in \mathbb{F}_p \), we denote by \(N_\lambda(R, S; M) \) the number of solutions to the congruence
\[
r^3 \equiv \lambda s^2 \pmod{p}, \quad (r, s) \in [R + 1, R + M] \times [S + 1, S + M].
\]
We use the method of [5], that in turn is based on the ideas of [4] (see also [12]), to obtain an upper bound on \(N_\lambda(R, S; M) \), which, in particular, implies an upper bound for the number of elliptic curves \(E_{r,s} \) with coefficients \((r, s) \in [R + 1, R + M] \times [S + 1, S + M] \) that fall in the same isomorphism class.

We use the bounds of character sums to obtain an upper bound on \(T(R, S; M) \) from which we derive an almost optimal lower bound \(I(R, S; M) \).

Throughout the paper, any implied constants in the symbols \(O, \ll \) and \(\gg \) are absolute otherwise. We recall that the notations \(U = O(V) \), \(U \ll V \) and \(V \gg U \) are all equivalent to the statement that the inequality \(|U| \leq cV \) holds with some constant \(c > 0 \).

2 Character Sums

Let \(\mathcal{X} \) be the set of all multiplicative characters modulo \(p \) and let \(\mathcal{X}^* = \mathcal{X} \setminus \{ \chi_0 \} \) be the set of nonprincipal characters. Garaev and García [9], improving a result of Ayyad, Cochrane and Zheng [1] (see also [6]), have shown that for any integers \(W \) and \(Z \)
\[
\sum_{\chi \in \mathcal{X}_0} \left| \sum_{z=W+1}^{W+Z} \chi(z) \right|^4 \ll pZ^2 \left(\log p + (\log(Z^2/p))^2 \right). \tag{5}
\]
Note that for any fixed \(\varepsilon > 0 \), if \(Z \geq p^\varepsilon \) the right hand side of (5) is of the form \(pZ^{2+o(1)} \). However for small values of \(Z \), namely for \(Z \ll (\log p)^{1/2} \), the bound (5) is trivial. We now combine (5) with a result of [4] to get the bound \(pZ^{2+o(1)} \) for any \(Z \).
Lemma 1. For arbitrary integers W and Z, with $0 \leq W < W + Z < p$, the bound
\[
\sum_{\chi \in \mathcal{X}_0} \left| \sum_{z = W + 1}^{W+Z} \chi(z) \right|^4 \ll p^{Z^2 + o(1)}
\]
holds.

Proof. We can assume that $Z \leq p^{1/4}$ since otherwise, as we have noticed, the bound (5) implies the desired result. Now, using that for z with $\gcd(z, p) = 1$, for the complex conjugated character $\bar{\chi}$ we have
\[
\bar{\chi}(z) = \chi(z^{-1}),
\]
we derive,
\[
\sum_{\chi \in \mathcal{X}_0} \left| \sum_{z = W + 1}^{W+Z} \chi(z) \right|^4 \leq \sum_{\chi \in \mathcal{X}} \left| \sum_{z = W + 1}^{W+Z} \chi(z) \right|^4 = \sum_{z_1, z_2, z_3, z_4 = W+1}^{W+Z} \chi(z_1 z_2 z_3 z_4^{-1})
\]
Thus, using the orthogonality of characters we obtain
\[
\sum_{\chi \in \mathcal{X}_0} \left| \sum_{z = W + 1}^{W+Z} \chi(z) \right|^4 \leq p J
\]
where J is number of solutions to the congruence
\[
z_1 z_2 \equiv z_3 z_4 \pmod{p}, \quad z_1, z_2, z_3, z_4 \in [W + 1, W + Z]
\]
By [4, Theorem 1], for any $\lambda \not\equiv 0 \pmod{p}$ the congruence
\[
z_1 z_2 \equiv \lambda \pmod{p}, \quad z_1, z_2 \in [W + 1, W + Z]
\]
has $Z^{o(1)}$ solutions, provided that $Z \leq p^{1/4}$. Therefore $J \leq Z^{2 + o(1)}$ and the result follows.

3 Small Points on Some Hypersurfaces

For the number of points in very small boxes we can get a better bound by using the following estimate of Bombieri and Pila [3] on the number of integral points on polynomial curves.
Lemma 2. Let C be an absolutely irreducible curve of degree $d \geq 2$ and $H \geq \exp(d^6)$. Then the number of integral points on C and inside of a square $[0, H] \times [0, H]$ does not exceed $H^{1/d} \exp(12\sqrt{d \log H \log \log H})$. For an integer a we used $\|a\|_p$ to denote the smallest by absolute value residue of a modulo p, that is

$$\|a\|_p = \min_{k \in \mathbb{Z}} |a - kp|.$$

By the Dirichlet pigeon-hole principle we easily obtain the following result.

Lemma 3. For any real numbers T_1, \ldots, T_s with

$$p > T_1, \ldots, T_s \geq 1 \quad \text{and} \quad T_1 \cdots T_s > p^{s-1}$$

and any integers a_1, \ldots, a_s there exists an integer t with $\gcd(t, p) = 1$ and such that

$$\|a_i t\|_p \ll T_i, \quad i = 1, \ldots, s.$$

4 Bound on $N_\lambda(R, S; M)$

It is easy to see that for $\lambda \in \mathbb{F}_p^*$ the given curve is absolutely irreducible. So general bounds on the number of points on a curve in a given box (see, for example, [11]) immediately imply that

$$N_\lambda(R, S; M) = \frac{M^2}{p} + O \left(p^{1/2} (\log p)^2 \right). \quad (6)$$

We are now ready to derive an upper bound on $N_\lambda(R, S; M)$ for smaller values of M.

Lemma 4. For any integers $p^{1/9} \geq M \geq 1$, $R \geq 0$, $S \geq 0$ with $R + M, S + M < p$ and $\lambda \in \mathbb{F}_p^*$ we have

$$N_\lambda(R, S; M) \leq M^{1/3 + o(1)}$$

as $M \to \infty$.

5
Proof. We have to estimate the number of solutions of the congruence

\[(R + x)^3 \equiv \lambda(S + y)^2 \pmod{p}\]

with \(1 \leq x, y \leq M\) which is equivalent to the congruence

\[x^3 + 3Rx^2 + 3R^2x - \lambda y^2 - 2\lambda Sy \equiv \lambda S^2 - R^3 \pmod{p}.\] (7)

By Lemma 3, for any \(T \leq p^{1/4}/M^{1/2}\) there exits \(|t| \leq T^4M^2\) such that

\[\|3Rt\|_p \leq p/(TM), \quad \|\lambda t\|_p \leq p/(TM), \quad \|3R^2t\|_p \leq p/T, \quad \|2\lambda St\|_p \leq p/T.\]

We now multiply both sides of the congruence (7) by \(t\), replace the congruence with the following equation over \(\mathbb{Z}\):

\[A_1x^3 + A_2x^2 + A_3x + A_4y^2 + A_5y + A_6 = pz,\] (8)

where

\[|A_1| \leq T^4M^2, \quad |A_2|, |A_4| \leq p/(TM), \quad |A_3|, |A_5| \leq p/T, \quad |A_6| \leq p/2.\]

Since for \(0 \leq x, y \leq M\) the left hand side of the equation (8) is bounded by \(T^4M^5 + 4pM/T + p/2\), we see that

\[|z| \ll \frac{T^4M^5}{p} + \frac{4M}{T} + 1.\]

We choose \(T \sim p^{1/5}/M^{4/5}\) which leads to the bound \(|z| \ll M^{9/5}p^{-1/5} + 1\).

We note that the polynomial \(A_1X^3 + A_2X^2 + A_3X + A_4Y^2 + A_5Y + A_6\) on left hand side of (8) is absolutely irreducible. Indeed, it is obtained from \(X^3 - \lambda Y^2\) (which, as it is easy to see, is absolutely irreducible) by a nontrivial modulo \(p\) affine transformation. Therefore, for every integers \(z\), the polynomial \(A_1X^3 + A_2X^2 + A_3X + A_4Y^2 + A_5Y + A_6 - pz\) is also absolutely irreducible (as its reduction modulo \(p\) is absolutely irreducible modulo \(p\)).

Now, for each \(z\), we have an absolutely irreducible curve of degree 3 corresponding to the equation (8) and we apply Lemma 2 to derive that the number of points in \([0, M]^2\) is \(\ll M^{1/3+o(1)}\).

Thus, the number of solutions in the original equation is bounded by \((M^{9/5}p^{-1/5} + 1) M^{1/3+o(1)}\). Recalling that \(M \leq p^{1/9}\), thus \(M^{9/5}p^{-1/5} + 1 \ll 1\) we conclude the proof. \(\square\)
The example of the curves $E_{r,s}$ with $(r, s) = (m^2, m^3), 1 \leq m \leq M^{1/3}$, shows that the exponent $1/3$ in the bound of Lemma 4 cannot be improved.

Clearly the argument used in the proof of Lemma 4 works for large values of M. In particular, for $M > p^{1/9}$ it leads to the bound $N_{\lambda}(R, S; M) \ll M^{32/15+o(1)}p^{-1/5}$ which is nontrivial for $M \leq p^{3/17}$.

However, using a modification of this argument we can obtain a stronger bound which is nontrivial for $p^{1/9} < M \leq p^{1/3}$:

Lemma 5. For any integers $p^{1/5} \geq M \geq p^{1/9}, R \geq 0, S \geq 0$ with $R+M, S+M < p$ and $\lambda \in \mathbb{F}_p^*$ we have

$$N_{\lambda}(R, S; M) \leq M^{11/6+o(1)}p^{-1/6}$$

as $M \to \infty$.

Proof. Let $K = \lfloor p^{1/6}/M^{1/2} \rfloor$ and observe that $1 \leq K \leq M$ when $p^{1/9} < M$. Next, we cover the square $[R+1, R+M] \times [S+1, S+M]$ by $J = O(M/K)$ rectangles of the form $[R_j+1, R_j+K] \times [S+1, S+M], j = 1, \ldots, J$. Then, the equation in each rectangle can be written as

$$x^3 + 3R_jx^2 + 3R_j^2x - \lambda y^2 - 2\lambda Sy \equiv \lambda S^2 - R_j^3 \pmod{p}.$$ \hspace{1cm} (9)

with $1 \leq x \leq K$ and $1 \leq y \leq M$.

To estimate the number of solutions of (9), we set

$$T_1 = p^{1/2}M^{3/2}, \quad T_2 = p^{2/3}M, \quad T_3 = p^{5/6}M^{1/2}, \quad T_4 = p/M^2, \quad T_5 = p/M.$$

and apply again Lemma 3. Hence, as in the proof of Lemma 4, we obtain an equivalent equation over \mathbb{Z}:

$$A_1x^3 + A_2x^2 + A_3x + A_4y^2 + A_5y + A_6 = pz,$$

with $|A_i| \leq T_i$ for $i = 1, \ldots, 5$ and $|A_6| \leq p/2$. The left hand side of (10) is bounded by

$$|A_1K^3 + A_2K^2 + A_3K + A_4M^2 + A_5M + A_6| \leq p^{1/2}M^{3/2}\left(\frac{p^{1/6}}{M^{1/2}}\right)^3 + p^{2/3}M\left(\frac{p^{1/6}}{M^{1/2}}\right)^2 + p^{5/6}M^{1/2}\frac{p^{1/6}}{M^{1/2}} + \frac{p}{M^2}M^2 + \frac{p}{M^2}M + p/2$$

$$= 5.5p.$$
Thus, z can take at most 11 values. As we have seen in the proof of Lemma 4, the polynomial on the left hand side of (10) is absolutely irreducible. Therefore, Lemma 2 implies that for each value of z, the equation (10) has at most $M^{1/3+o(1)}$ solutions. Summing up all the solutions we have finally that the original congruence has

$$(M/N)M^{1/3+o(1)} = M^{11/6+o(1)}p^{-1/6}$$
solutions.

\square

Combining the bounds (6) with Lemmas 4 and 5, we obtain:

Theorem 6. For any integers $M \geq 1$, $R \geq 0$, $S \geq 0$ with $R+M, S+M < p$, we have,

$$N_\lambda(R, S; M) \ll M^{o(1)}$$

\begin{equation}
\begin{cases}
M^{1/3}, & \text{if } M < p^{1/9}, \\
M^{11/6}p^{-1/6}, & \text{if } p^{1/9} \leq M < p^{1/5}, \\
p^{1/2}, & \text{if } p^{1/2} \leq M < p^{3/4}, \\
M^2p^{-1}, & \text{if } p^{3/4} \leq M < p,
\end{cases}
\end{equation}

as $M \to \infty$

We note that unfortunately in the range $p^{1/5} \leq M < p^{1/2}$ we do not have any nontrivial estimates.

5 Bound on $T(R, S; M)$

In fact we consider a more general quantity. Given positive integers i, j let $T_{i,j}(R, S; M)$ denote the number of solutions of the equation

$$r^i u^j \equiv u's^j \pmod{p}$$

with

$$(r, s), (u, v) \in [R + 1, R + M] \times [S + 1, S + M].$$

Thus, $T(R, S; M) = T_{3,2}(R, S; M)$.

Theorem 7. For any integers $M \geq 1$, $R \geq 0$, $S \geq 0$ with $R+M, S+M < p$, we have,

$$T_{i,j}(R, S; M) \ll \frac{M^4}{p} + M^{2+o(1)}$$

as $M \to \infty$.
Proof. Using the orthogonality of characters, we write the number of solutions to (11) with \((r, s), (u, v) \in [R + 1, R + M] \times [S + 1, S + M]\) as

\[
T_{i,j}(R, S; M) = \sum_{r,u=R+1}^{R+M} \sum_{s,v=S+1}^{S+M} \frac{1}{p-1} \sum_{\chi \in \mathcal{X}} \chi \left((r/u)^i (v/s)^j\right)
\]

Thus by the Cauchy inequality

\[
T_{i,j}(R, S; M)^2 \leq \frac{1}{(p-1)^2} \sum_{\chi \in \mathcal{X}} \left| \sum_{r=R+1}^{R+M} \chi^i(r) \right|^4 \times \sum_{\chi \in \mathcal{X}} \left| \sum_{s=S+1}^{S+M} \chi^j(s) \right|^4.
\]

We estimate the contribution to the first sums from at most \(i\) characters \(\chi\) with \(\chi^i = \chi_0\) trivially as \(iM^4\) getting

\[
\sum_{\chi \in \mathcal{X}} \left| \sum_{r=R+1}^{R+M} \chi^i(r) \right|^4 \leq iM^4 + \sum_{\chi \in \mathcal{X}} \left| \sum_{r=R+1}^{R+M} \chi^i(r) \right|^4 \leq iM^4 + i \sum_{\chi \in \mathcal{X}^*} \left| \sum_{r=R+1}^{R+M} \chi(r) \right|^4.
\]

Substituting the above bounds in the inequality (12) (similarly for \(j\)) and then using Lemma 1 we conclude the proof.

Corollary 8. For any integers \(M \geq 1, R \geq 0, S \geq 0\) with \(R+M, S+M < p\), we have,

\[
I(R, S; M) \gg \min \{p, M^{2-o(1)}\}
\]
as \(M \to \infty\)

Proof. Let

\[
\Gamma = \{r^3/s^2 : r \in [R + 1, R + M], s \in [S + 1, S + M]\}
\]

and let

\[
f(\lambda) = |\{(r, s) \in [R + 1, R + M] \times [S + 1, S + M] : r^3/s^2 = \lambda\}|.
\]
Using the Cauchy inequality we derive

\[M^4 = \left(\sum_{\lambda \in \Gamma} f(\lambda) \right)^2 \leq |\Gamma| \sum_{\lambda} f^2(\lambda) \leq I(R, S; M) T_{3,2}(R, S; M). \]

Using Theorem 7 we conclude the proof. \(\square\)

Clearly the bound of Corollary 8 is quite tight as we have the trivial upper bound

\[I(R, S; M) \leq \min \{ p, M^2 \}. \]

6 Comments and Open Problems

Note that Theorem 7 can be easily extended to coefficients \((r, s)\) that belong to rectangles \([R+1, R+K] \times [S+1, S+L]\) rather than squares (the bound (6) also holds for such rectangles).

As we have mentioned the exponent 1/3 in the bound of Lemma 4 cannot be improved, however the range \(M \leq p^{1/9}\) can possibly be extended. As the first step towards this, the following question has to be answered:

Problem 1. Let \(E\) be an elliptic curve over \(\mathbb{Z}\) such that all the coefficients are \(M^{O(1)}\). Is it true that the number of integer points \((x, y) \in [0, M] \times [0, M]\) on \(E\) is \(M^{o(1)}\)?

We refer to [7, 10] for some bounds on the number of points on elliptic curves in boxes.

As we have noticed in Section 4 we do not have any nontrivial bounds on \(N_\lambda(R, S; M)\) for \(p^{1/5} \leq M < p^{1/2}\). It is certainly interesting to close this gap.

Problem 2. Is it true that \(N_\lambda(R, S; M) = o(M)\) for all \(M = o(p)\)?

Finally, it is also natural to expect that the term \(M^{o(1)}\) can be removed from the bound of Corollary 8.

Problem 3. Is it true that \(I(R, S; M) \gg \min \{ p, M^2 \}\)?
Acknowledgement

The authors are grateful to Moubariz Garaev and Joe Silverman for their comments.

This work started during a very pleasant visit by I. S. to the Universidad Autónoma de Madrid; the support and hospitality of this institution are gratefully acknowledged.

During the preparation of this paper, J.C was supported by Grant MTM 2008-03880 of MICINN (Spain), I. S. was supported in part by ARC grant DP1092835 (Australia) and and by NRF Grant CRP2-2007-03 (Singapore), and A. Z. was supported by Departamento de Matemáticas, UAM (Spain).

References

[1] A. Ayyad, T. Cochrane and Z. Zheng, ‘The congruence $x_1x_2 \equiv x_3x_4 \pmod{p}$, the equation $x_1x_2 = x_3x_4$ and the mean value of character sums’, J. Number Theory, 59 (1996), 398–413.

