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Abstract. We prove that the lattice points on the circles x2 + y2 = n are
well distributed for most circles containing lattice points.

1. Introduction

The number of lattice points on the circle x2 + y2 = n is denoted
by r(n). It is known that r(n) is an unbounded function and it is a
natural question to ask for the distribution of the r(n) lattice points
on the circle x2 + y2 = n

In order to give a measure of the distribution of the lattice points,
we consider the polygon with vertices on the r(n) lattice points and we
denote by S(n) the area of such polygon. When the lattice points are
well distributed, the area of the polygon will be close to the area of the

circle, i.e. S(n)
πn
∼ 1.

If r(n) > 0, trivially 2
π
≤ S(n)

πn
< 1. In [1] we proved that the set{

S(n)
πn

: r(n) > 0
}

is dense in the interval [ 2
π
, 1]. In this paper we prove

that for most integer n, r(n) > 0, the quantity S(n)
πn

is close to 1.

Theorem 1.1. Let x ≥ 101030
. Then, for any n ≤ x with r(n) 6= 0,

(1.1)
S(n)

πn
> 1−

(
12 log log log x

log log x

)2

with at most O

(
x

(log x)1/2 log log x log log log x

)
exceptions.

It should be noted [2] that if we call Rx = {n ≤ x : r(n) 6= 0}, then
|Rx| ∼ c x

(log x)1/2

2. Background

In the proof of theorem 1.1 we will use the prime number theorem
for Gaussian primes on small arcs, and the Selberg sieve. We present
them in a suitable form in this section.
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Theorem 2.1. Let D a sector of the circle x2 + y2 ≤ R2 with angle θ.
Then

(2.1)
∑
ρ∈D

1 =
θR2

π logR
+O

(
R2

log2 R

)

where ρ = a+ bi are primes in Z[i] and the constant in the error term
does not depend on θ.

Proof. Stronger versions of this result can be found in [2] and [3] �

The sieving function S(A, P, z) denotes the number of terms of the
sequence A that are not divisible by any prime p ∈ P such that p < z.

Theorem 2.2. If P is an infinite subset of primes such that

(2.2) πP (x) = α
x

log x
+O

(
x

log2 x

)

and A = {1, . . . , x}, then

(2.3) S(A, P, x)� x

(log x)α
.

Proof. It will be a consequence of the Selberg sieve.
For every square-free positive integer d, let |Ad| denote the number of

terms of the sequence A that are divisible by d. Then |Ad| = 1
d
x+r(d),

with |r(d)| ≤ 1.
Let

G(z) =
∑

m<z,p|m implies p∈P

1

m
.

Selberg sieve ([4], pg 180) implies that

S(A,P, z) ≤ x

G(z)
+

∑

d<z2,d square-free

3ω(d)

Observe that

G(z)
∏

p<z,p6∈P

(
1 +

1

p
+

1

p2
+ · · ·

)
≥
∑
m<z

1

m
� log z

and
∏

p<z,p 6∈P

(
1 +

1

p
+

1

p2
+ · · ·

)
=

∏

p<z,p6∈P

(
p

p− 1

)
≤

≤
∏
p

(
p2

p2 − 1

) ∏

p<z,p 6∈P

(
1 +

1

p

)
.
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The first product is a constant and the second product can be esti-
mated taking logarithms.

log

( ∏

p<z,p 6∈P

(
1 +

1

p

))
≤

∑

p<z,p 6∈P

1

p
=
∑
p<z

1

p
−

∑
p<z,p∈P

1

p
.

The two sums can be estimated using the Abel summation and the
formulas

π(x) =
x

log x
+O(

x

log2 x
), πP (x) = α

x

log x
+O(

x

log2 x
).

Then ∑
p<z

1

p
−

∑
p<z,p∈P

1

p
= (1− α) log log z +O(1)

and we have

S(A, P, z)� x

(log z)α
+

∑

m<z2,m square-free

3ω(m).

Observe that∑

m<z2,m square-free

3ω(m) =
∑

m<z2,m square-free

(2ω(m))
log 3
log 2 ≤

≤
∑

m<z2,m square-free

d2(m)� z2 log3 z

Now if we choose z = [x1/3] we obtain

S(A, P, x) ≤ S(A, P, z)� x

(log x)α

�

Also we present in this section two easy propositions that we will
need in the proof of theorem 1.1.

Proposition 2.3. Let {xj}2k−1
j=0 be a set of real numbers such that

xj ∈ Ij =

(
j

2k
,
j + 1

2k

]
, j = 0, . . . , 2k − 1

and for any real φ let S =
{
φ+

∑2k−1
j=0 εjxj, εj = ±1

}
. Then, for

any j = 0, . . . k − 1, there exist s ∈ S such that
(s

2

)
∈ Jj =

(
j

k
,
j + 1

k

]
,

where ( s
2
) denotes the fractional part of s

2
.
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Proof. Let α = φ−∑2k−1
j=0 xj. Then we can write

1

2
S =

{
α

2
+

2k−1∑
j=0

γjxj, γj ∈ {0, 1}
}
.

The elements si
2

= α
2

+ xi, i = 0, . . . , 2k− 1 satisfy si+1

2
− si

2
< 1

k
and

s0
2

+ 1− s2k−1

2
< 1

k
. Then, for each interval Jj there exist a si

2
such that(

si
2

) ∈ Jj. �

Proposition 2.4. Let n = n1n2 such that nj = x2
j + y2

j , xj + iyj =√
nje

iφj , j = 1, 2. Then, the angles

±φ1 ± φ2

correspond to lattice points on the circle x2 + y2 = n.

Proof. Obvious. See [1] for more details. �

3. Proof of Theorem 1.1

For each prime p = 2 or p ≡ 1 (mod 4) let φp = 4
π

tan−1(a/b) where
a, b are the only integers such that a2 + b2 = p, 0 < a ≤ b. Then
φp ∈ (0, 1].

We split the interval (0, 1] in the 2k intervals Ij = ( j
2k
, j+1

2k
], j =

0, 1, . . . , 2k − 1 and we define

(3.1) Gk(x) =
{
n ∈ Rx;n = p0p1 · · · p2k−1m, with φpj ∈ Ij

}

In proposition 3.1 we will prove that if n ∈ Gk(x) the lattice points
on the circle x2 + y2 = n are well distributed, and in proposition 3.2
we will estimate the cardinality of Bk(x) = Rx \ Gk(x). Theorem 1.1
will be a consequence of these propositions for a suitable k.

Proposition 3.1. If n ∈ Gk(x) then

(3.2)
S(n)

πn
> 1− 13π2

24k2

Proof. We can write n = p0 · · · p2k−1n
′. Obviously, n′ has, at least,

a representation as a sum of two squares, n′ = x′2 + y′2, x′ + iy′ =√
n′ exp (iπ

4
φ′).

Proposition 2.4 implies that the angles π
4

(
φ′ +

∑2k−1
j=0 εjφpj

)
, εj =

±1 correspond to lattice points on the circle x2 + y2 = n.
Suppose that π

4
s is one of these angles. Then, due to the symmetry

of the lattice points, the angle π
4
s− π

2
[ s
2
] = π

2
( s

2
) also corresponds to a

lattice point.
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Now we apply proposition 2.3 to conclude that for every j = 0, . . . , k−
1 there exists an angle s such that ( s

2
) ∈ Jj = ( j

k
, j+1

k
]. In other words,

for every j = 0, . . . , k − 1 there exists a lattice point on the arc

√
n exp (

π

2
θi) θ ∈ Jj.

Again, due to the symmetry of the lattice points we can find, for
every j = 0, . . . , k − 1, for r = 0, 1, 2, 3 a lattice point on the arc

√
n exp (

π

2
(θ + r)i) θ ∈ Jj.

Now we choose a lattice point for each arc. Let P0 be the polygon
with vertices in these 4k lattice points. Obviously S0(n) ≤ S(n), where
S0(n) =Area (P0). Now we denote by θ1, . . . θ4k the angles between each
pair of two consecutive lattice points.

If we consider a sector with angle θ and radius
√
n, an easy geometric

argument prove that the part of the sector outside the triangle is less
than 13

48
nθ3.

Then

πn− S0(n) ≤ 13

48
n

4k∑
j=1

θ3
j

We know that θj ≤ π
k

and that
∑4k

j=1 θj = 2π. Then the maximum
happens when the half of the angles are 0 and the other half are π

k
.

Then

πn− S(n) ≤ πn− S0(n) ≤ n
13π3

24k2

�

Proposition 3.2.

(3.3) |Bk(x)| � kx

log
1
2

+ 1
4k x

+ kx3/4

Proof. If we apply theorem 2.1 to the region

Dj =

{
(a, b) : a2 + b2 ≤ x, 0 < a ≤ b,

4

π
tan−1(

a

b
) ∈ Ij

}

we obtain

(3.4) πPj(x) =
x

4k log x
+O

(
x

log2 x

)

where Pj = {p 6≡ 3 (mod 4) : φp ∈ Ij}.
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On the other hand, if we denote by Q = {q ≡ 3 (mod 4) : q primes|},
the prime number theorem for arithmetic progressions says that πQ(x) =
x

2 log x
+O

(
x

log2 x

)
. Then, if Qj = Q ∪ Pj we obtain

(3.5) πQj(x) =

(
1

2
+

1

4k

)
x

log x
+O

(
x

log2 x

)

We define, for any 1 ≤ l ≤ √x, A∗l = {m ≤ x/l2 : m squarefree }
and Al = {m ≤ x/l2}.

Now, suppose that n ∈ Bk(x) with n = l2m, m squarefree.
Because n ∈ Rx then m has not prime divisors q ≡ 3 (mod 4).
Because n 6∈ Gx, then there exists an integer j such that m has not

prime divisors p with φp ∈ Ij
Then, that integer n is shifted in S(A∗l , Qj, x/l

2). Then
(3.6)

|Bk(x)| ≤
∑

1≤l≤√x

2k−1∑
j=0

S(A∗l , Qj, x/l
2) ≤

∑

1≤l≤√x

2k−1∑
j=0

S(Al, Qj, x/l
2)

For l < x1/4 we apply theorem 2.2 to each S(Al, Qj, x/l
2)

S(Al, Qj, x/l
2)� x

l2(log(x/l2))1/2+1/4k
� x

l2(log x)1/2+1/4k

and then

∑

1≤l≤x1/4

2k−1∑
j=0

S(Al, Qj, x/l
2)� kx

(log x)1/2+1/4k
.

For l ≥ x1/4 we use the trivial estimate S(Al, Qj, x/l
2) ≤ x/l2

Then
∑

x1/4≤l

2k−1∑
j=0

S(Al, Qj, x/l
2)� kx3/4

and we finish the proof. �

We finish the proof of theorem 1.1 taking k =
[

log log x
8 log log log x

]
.

Observe that if x ≥ 101030
, then k = [ log log x

8 log log log x
] > log log x

16 log log log x
and

then

(3.7)
S(n)

πn
> 1− 13

24

(
16 log log log x

log log x

)2

> 1−
(

12 log log log x

log log x

)2

and

(3.8) |Bk(x)| � log log x

8 log log log x

x

(log x)1/2(log x)
2 log log log x

log log x
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(3.9) =
x

(log x)1/2 log log x log log log x
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