GENERALIZATION OF A THEOREM OF ERDŐS AND RÉNYI
ON SIDON SEQUENCES

JAVIER CILLERUELO, SÁNDOR Z. KISS, IMRE Z. RUZSA, AND CARLOS VINUESA

Abstract. Erdős and Rényi claimed and Vu proved that for all $h \geq 2$ and for all $\varepsilon > 0$, there exists $g = g_h(\varepsilon)$ and a sequence of integers $A$ such that the number of ordered representations of any number as a sum of $h$ elements of $A$ is bounded by $g$, and such that $|A \cap [1, x]| \gg x^{1/h-\varepsilon}$.

We give two new proofs of this result. The first one consists of an explicit construction of such a sequence. The second one is probabilistic and shows the existence of such a $g$ that satisfies $g_h(\varepsilon) \ll \varepsilon^{-1}$, improving the bound $g_h(\varepsilon) \ll \varepsilon^{-h+1}$ obtained by Vu.

Finally we use the “alteration method” to get a better bound for $g_3(\varepsilon)$, obtaining a more precise estimate for the growth of $B_3[g]$ sequences.

1. Introduction

Given an integer $h \geq 2$, we say that a sequence of integers $A$ is a $B_h[g]$ sequence if every integer $n$ has at most $g$ representations as a sum of $h$ elements of $A$. We will write

$$r_{h,A}(n) = |\{(a_1, a_2, \ldots, a_h) \mid n = a_1 + \cdots + a_h, \quad a_1 \leq \cdots \leq a_h, \quad a_i \in A\}|.$$

Thus, $A$ is a $B_h[g]$ sequence if $r_{h,A}(n) \leq g$ for every positive integer $n$.

As usual, $A(x) = |A \cap [1, x]|$ counts the number of positive elements of $A$ less than or equal to $x$. The counting method easily gives $A(x) \ll x^{1/h}$ for any $B_h[g]$ sequence. It is believed that a $B_h[g]$ sequence $A$ cannot satisfy $A(x) \gg x^{1/h}$. However it is only known when $(h, g) = (\text{even}, 1)$.

In a seminal paper, Erdős and Rényi [4] proved, using the probabilistic method (see, for example, [1] for an excellent exposition of the method), that for any $\varepsilon > 0$ there exists $g = g(\varepsilon)$ and a $B_2[g]$ sequence such that $A(x) \gg x^{1/2-\varepsilon}$. In this paper they claimed (but did not prove) that the same method gives the analogous result for $h \geq 3$.

J. C. and C. V. were supported by Grant MTM 2008-03880 of MICINN.
I. R. is supported by ERC-AdG Grant No. 228005 and Hungarian National Foundation for Scientific Research (OTKA), Grants No. K 61908, K 72731.
Theorem 1.1. For any $\varepsilon > 0$ and $h \geq 2$, there exists $g = g_h(\varepsilon)$ and a $B_h[g]$ sequence, $A$, such that $A(x) \gg x^{1/h - \varepsilon}$.

Probably they did not notice that when $h \geq 3$ two distinct representations of an integer as a sum of $h$ numbers can share common elements. If $x_1 + \cdots + x_h = y_1 + \cdots + y_h$ and $x_1 = y_1$, then the events $(x_1, \ldots, x_h \in A)$ and $(y_1, \ldots, y_h \in A)$ are not independent (this cannot happen when $h = 2$ since one equal addend implies that the other is also equal). This phenomena makes the cases $h \geq 3$ much more difficult than the case $h = 2$.

In [8] Vu gave the first correct proof of Theorem 1.1. He used ideas from a paper of Erdős and Tetali [5] to solve a similar problem for a related question. The key point is the use of the “Sunflower lemma” to prove that if an integer has enough representations then we can select $g + 1$ representations which are disjoint. Now the probabilistic method works easily because we deal with independent events. If we follow the details of the proof we can see that Vu obtains $g_h(\varepsilon) \ll \varepsilon - h + 1$.

The aim of this paper is to present new proofs of Theorem 1.1 and to obtain better relations between $g$ and $\varepsilon$.

The first one consists of an explicit construction of the sequence claimed in Theorem 1.1. We do it in Section 2.

The second one is a probabilistic but distinct and simpler proof than that presented by Vu. We do not use the “Sunflower lemma”, but a simpler lemma, and we get a better upper bound for $g_h(\varepsilon)$. More precisely, we prove the next theorem in Section 3.

Theorem 1.2. For any $\varepsilon > 0$ and $h \geq 2$, there exists $g = g_h(\varepsilon) \ll \varepsilon^{-1}$ and a $B_h[g]$ sequence $A$, such that $A(x) \gg x^{1/h - \varepsilon}$.

Actually one can check in the proof of the theorem above that one can take any $g_h(\varepsilon) \geq 2^{h-3}h(h-1)!^2\varepsilon^{-1}$. This theorem improves Vu’s method when $h \geq 3$, where we have to deal with dependent events. Vu’s proof only gives $g_h(\varepsilon) \ll \varepsilon^{-h+1}$ which is worse than our bound when $h \geq 3$.

For the case $h = 2$ Erdős and Rényi proved that any $g_2(\varepsilon) > \frac{1}{4\varepsilon} - 1$ satisfies the condition of Theorem 1.2 and the first author [2] used the “alteration method” to improve that bound to $g_2(\varepsilon) > \frac{1}{4\varepsilon} - \frac{1}{2}$. In the last section we also use the alteration method to refine Theorem 1.2 when $h = 3$ proving that any $g_3(\varepsilon) > \frac{2}{3\varepsilon} - \frac{2}{3}$ works. In other words,
Theorem 1.3. For every \( \delta > 0 \) and for every \( g \geq 1 \) there is a \( B_3[g] \) sequence \( A \), such that

\[ A(x) \gg x^{\frac{2}{3g+2} - \delta}. \]

It is also possible to refine Theorem 1.2 for \( h \geq 4 \) using the “alteration method” but the exponents we would obtain in these cases are not satisfactory enough. By “satisfactory enough” we mean exponents such that when we particularize to \( g = 1 \), we obtain the same exponent that we get with the greedy algorithm. That is what happens for \( h = 2 \) ([2]) and \( h = 3 \) (Theorem 1.3).

2. A constructive proof of Theorem 1.1

Given \( h \) and \( \varepsilon \), we construct a sequence \( A \) with \( r_{h,A}(n) \) bounded and we will prove that \( A(n) > n^{1/h - \varepsilon} \) for sufficiently large \( n \), which implies Theorem 1.1.

We use the representation of natural numbers in a number system with variable base. It is easy to see that every natural number \( x \) can be expressed uniquely in the form

\[ x = b_0 + b_1q_1 + b_2q_1q_2 + \cdots + b_sq_1\cdots q_s + \cdots, \]

where \( 0 \leq b_i < q_i + 1 \). The \( b_i \)'s and \( q_i \)'s are natural numbers, \( b_i \)'s called the “digits” and \( q_i \)'s called the “bases”.

We consider \( l \geq 2 \), a large enough number that will be fixed later. We fix the sets \( 0 \in A_i \subset \left[ 0, \frac{q_i}{h} \right) \) such that the \( A_i \)'s are maximal sets with the condition \( r_{h,A_i}(n) \leq 1 \) for every \( n \). It is known (see for example [6]) that if \( p \) is prime, there is a \( B_h \) set in \( [0, p^h - 2] \) with \( p \) elements. Combining this result with Bertrand’s postulate we can assume that

\[ |A_i| > \frac{1}{2} \left( \frac{q_i}{h} \right)^{1/h}. \]

Let \( A \) be those natural numbers \( n \) with the following two properties: First, each digit \( b_i \) of \( n \) satisfies \( b_i \in A_{i+1} \); and second, there is an integer \( m \) such that \( b_i = 0 \) for \( i \not\in [m+1, \ldots, m+l] \).

First we prove that \( r_{h,A}(n) < (h!)^h \). We add up \( h \) numbers, \( a_1, a_2, \ldots, a_h \).

Since the \( j \)-th digit of each addend is in \( \left[ 0, \frac{q_j}{h} \right) \), the \( j \)-th digit of the sum will be the sum of the \( j \)-th digits of the \( a_i \)'s (in other words, there will be no carries).

And, since the \( j \)-th digit of each addend is in a \( B_h[1] \) set, the \( j \)-th digit of the sum can be obtained in only one way as a sum of \( h \) digits. Note that \( h \) numbers have \( h! \) permutations, so for each digit of the sum we could have the corresponding digits of the \( h \) addends distributed in at most \( h! \) ways.
Finally, observe that the sum of the number of non zero digits of all the addends is less than or equal to $hl$, so the number of digits of the sum different from zero will also be less than or equal to $hl$, and finally we will have $r_{h,A}(n) \leq (h!)^h$ for every $n$.

Now, we give an estimation of the value of $A(n)$. Given $n$, we know that there exists $j$ such that

$$q_1 q_2 \cdots q_j \leq n < q_1 q_2 \cdots q_{j+1}.$$  

It is clear that those integers with digits

$$b_0 = b_1 = \cdots = b_{j-l-1} = 0 \quad \text{and} \quad b_i \in A_{i+1}, \quad i = j - l, \ldots, j - 1,$$

are in $A$. Let $N$ denote the number of such integers. We define $r = \frac{\log_2 l}{l}$ and, for $i \geq 1$,

$$q_i = \lfloor e^{(1+r)^{i-1}} \rfloor.$$  

Since $\frac{e^{(1+r)^i} - 1}{r} \leq q_i \leq e^{(1+r)^i} - 1$ and $2(2h)^{1/h} \leq 2e^{2/r} < e^2$, inequality (1) implies

$$|A_i| > \frac{1}{2} \left( \frac{e^{(1+r)^{i-1}}}{2h} \right)^{1/h} > e^{\frac{(1+r)^{i-1}}{h} - 2}. $$

First we give an upper bound for $\log n$. It follows from (2) and (3) that

$$\log n < \log(q_1 \cdots q_{j+1}) \leq 1 + (1 + r) + \cdots + (1 + r)^j < \frac{(1 + r)^{j+1}}{r}. $$

In the next step we will give a lower estimation for $\log N$. Applying (4) we have

$$\log N = \sum_{i=j-l+1}^{j} \log |A_i| > \frac{(1 + r)^{j-l} + \cdots + (1 + r)^{j-1}}{h} - 2l $$

$$= \frac{(1 + r)^j}{hr} (1 - (1 + r)^{-l}) - 2l.$$

In view of (5) and (6) we have

$$\frac{h \log N}{\log n} > \frac{(1 + r)^j (1 - (1 + r)^{-l})}{(1 + r)^{j+1}} - \frac{2lrh}{(1 + r)^{j+1}} $$

$$= 1 - \frac{(1 + r)^{-l}}{1 + r} - \frac{2lrh}{(1 + r)^{j+1}}.$$
Using that \( \frac{1}{1 + r} > 1 - r \) and that \[ (1 + \frac{\log_2 l}{l})^{\frac{l}{m_2^2}} \geq 2 \] for any \( l \geq 2 \), we have

\[
\frac{1 - (1 + r)^{-l}}{1 + r} > 1 - r - (1 + r)^{-l} = 1 - \frac{\log_2 l}{l} - \left(1 + \frac{\log_2 l}{l}\right)^{-l} > 1 - \frac{\log_2 l}{l} - \frac{1}{l} > 1 - \frac{2 \log_2 l}{l}.
\]

(8)

On the other hand, since \( \lim_{j \to \infty} \frac{2 lr h}{(1 + r)^j + 1} = 0 \) we have that, for sufficiently large \( j \),

\[
\frac{2 lr h}{(1 + r)^j + 1} < \frac{\log_2 l}{l}.
\]

(9)

Finally, from (7), (8) and (9) we have

\[
\frac{h \log N}{\log n} > 1 - \frac{3 \log_2 l}{l},
\]

for sufficiently large \( n \).

We finish the proof of Theorem 1.1 taking, for a given \( \varepsilon > 0 \), a large enough integer \( l \) such that \( \frac{3 \log_2 l}{l} < h \varepsilon \), because then \( \log N > \left(\frac{1}{h} - \varepsilon\right) \log n \), i.e. \( N > n^{1/h - \varepsilon} \).

Just a little comment about the dependence of \( g \) on \( \varepsilon \). Observe that our \( g \) is \( (h!)^{th} \) and that, given \( \varepsilon \), we need to choose a large value of \( l \), say \( l \gg \varepsilon^{-1} \log \varepsilon^{-1} \). This makes the dependence of \( g \) on \( \varepsilon \) very bad. The value of \( g \) we get with this construction depends more than exponentially on \( \varepsilon^{-1} \). We will try to improve this in the next section and, for the case \( h = 3 \), even more in the last one.

Note that in [3] we can find an explicit Sidon sequence with \( A(x) \gg x^{1/3 - o(1)} \). But this construction can not be generalized to get dense \( B_h[g] \) sequences.

### 3. A NEW PROBABILISTIC PROOF OF THEOREM 1.1

**Definition 3.1.** Given \( 0 < \alpha < 1 \) we define \( S(\alpha, m) \) as the probability space of the sequences of positive integers defined by

\[
P(x \in A) = \begin{cases} 
0 & \text{if } x < m \\
x^{-\alpha} & \text{if } x \geq m
\end{cases}.
\]

**Theorem 3.2.** For any \( m \), a random sequence \( A \) in \( S(\alpha, m) \) satisfies \( A(x) \gg x^{1 - \alpha} \) with probability 1.

**Proof.** First of all, we calculate

\[
E(A(x)) = \sum_{n \leq x} P(n \in A) = \sum_{m \leq n \leq x} n^{-\alpha} = \frac{x^{1 - \alpha}}{1 - \alpha} + O_{\alpha, m}(1),
\]
when \( x \to \infty \). Now, we use Chernoff’s Lemma\(^1\) to get
\[
P \left( A(x) \leq \frac{1}{2} \mathbb{E}(A(x)) \right) \leq P \left( |A(x) - \mathbb{E}(A(x))| \geq \frac{1}{2} \mathbb{E}(A(x)) \right) \leq 2e^{-\frac{1}{3} \left( \frac{x^{1-\alpha}}{1-\alpha} + O(1) \right)}.
\]
Since \( \sum_{x=1}^{\infty} 2e^{-\frac{1}{3} \left( \frac{x^{1-\alpha}}{1-\alpha} + O(1) \right)} < \infty \), the Borel-Cantelli Lemma\(^2\) says that \( A(x) \gg x^{1-\alpha} \) with probability 1. \( \square \)

**Notation 3.3.** We denote the set which elements are the coordinates of the vector \( \bar{x} \) as \( \text{Set}(\bar{x}) \). In other words, if \( \bar{x} = (x_1, x_2, x_3, \ldots) \), we let \( \text{Set}(\bar{x}) \) denote the set \( \{x_1, x_2, x_3, \ldots\} \). Of course, if two or more coordinates of \( \bar{x} \) are equal, this value appears only once in \( \text{Set}(\bar{x}) \).

**Notation 3.4.** We define \( R_h(n) = \{(n_1, n_2, \ldots, n_h) \mid n = n_1 + \cdots + n_h, \ n_1 \leq \cdots \leq n_h, \ n_i \in \mathbb{N} \} \).

**Lemma 3.5.** For a sequence \( A \) in \( S(\alpha, m) \), for every \( h \) and \( n \)
\[
\mathbb{E}(r_{h,A}(n)) \leq C_{h,\alpha} n^{h(1-\alpha)-1}
\]
where \( C_{h,\alpha} \) depends only on \( h \) and \( \alpha \).

**Proof.**
\[
\mathbb{E}(r_{h,A}(n)) = \sum_{\bar{x} \in R_h(n)} \prod_{x \in \text{Set}(\bar{x})} \mathbb{P}(x \in A)
\]
\[
= \sum_{j=1}^{h} \sum_{\bar{x} \in R_h(n)} \prod_{x \in \text{Set}(\bar{x})} \mathbb{P}(x \in A).
\]
Since the largest element of every \( \bar{x} \in R_h(n) \) is \( \geq n/h \) we have
\[
\mathbb{E}(r_{h,A}(n)) \leq \left( \frac{n}{h} \right)^{-\alpha} \sum_{j=1}^{h} \left( \sum_{x<n} x^{-\alpha} \right)^{j-1}
\]
\[
\leq \left( \frac{n}{h} \right)^{-\alpha} \sum_{j=1}^{h} \left( \int_0^n x^{-\alpha} \, dx \right)^{j-1}
\]
\[
\leq \left( \frac{n}{h} \right)^{-\alpha} \sum_{j=1}^{h} \left( \frac{n^{1-\alpha}}{1-\alpha} \right)^{j-1}
\]
\[
\leq C_{h,\alpha} n^{h(1-\alpha)-1}.
\]

---

\(^1\)Let \( X = t_1 + \cdots + t_n \) where the \( t_i \) are independent Boolean random variables. **Chernoff’s Lemma** says that for every \( 0 < \varepsilon < 2 \), \( \mathbb{P}(|X - \mathbb{E}(X)| \geq \varepsilon \mathbb{E}(X)) \leq 2e^{-\varepsilon^2 \mathbb{E}(X)/4} \).

\(^2\)Borel-Cantelli Lemma. Let \( (E_n)_{n=1}^\infty \) be a sequence of events in a probability space. If \( \sum_{n=1}^\infty \mathbb{P}(E_n) < \infty \) then the probability that infinitely many of them occur is 0.
Definition 3.6. We say that two vectors $\vec{x}$ and $\vec{y}$ are disjoint if $\text{Set}(\vec{x})$ and $\text{Set}(\vec{y})$ are disjoint sets. We define $r^*_l(A)(n)$ as the maximum number of pairwise disjoint representations of $n$ as a sum of $l$ elements of $A$, i.e. the maximum number of pairwise disjoint vectors of $R_l(n)$ with their coordinates in $A$. We say that $A$ is a $B^*_l[g]$ sequence if $r^*_l(A)(n) \leq g$ for every $n$.

Lemma 3.7. For a sequence $A$ in $S(\alpha, m)$, for every $h$ and $n$

$$P(r^*_h,A(n) \geq s) \leq C_{h,\alpha,s} n^{(h(1-\alpha)-1)s}$$

where $C_{h,\alpha,s}$ depends only on $h$, $\alpha$ and $s$.

Proof. Using the independence given by the pairwise disjoint condition

$$P(r^*_h,A(n) \geq s) = \sum_{\{x_1,\ldots,x_s\}} \prod_{i=1}^s \prod_{x \in \text{Set}(x_i)} P(x \in A)$$

pairwise disjoint

$$\leq \left( \sum_{x \in R_h(n) \times \text{Set}(x)} \prod_{x \in \text{Set}(x)} P(x \in A) \right)^s$$

$$= \mathbb{E}(r^*_h,A(n))^s$$

and using Lemma 3.5 we conclude the proof. \square

Proposition 3.8. Given $h \geq 2$ and $0 < \varepsilon < 1/h$, a random sequence in $S(1-\frac{1}{h} + \varepsilon, m)$ is a $B^*_h[g]$ sequence for every $g \geq \frac{2}{m}$ with probability $1 - O(\frac{1}{m})$.

Proof. From Lemma 3.7, and taking into account the value of $\alpha = 1 - \frac{1}{h} + \varepsilon$, we have

$$P(r^*_h,A(n) \geq g+1) \leq C_{h,\varepsilon,g} n^{-\varepsilon(g+1)}.$$  

Since $r^*_h,A(n) = 0$ for $n < m$ we have

$$P\left(r^*_h,A(n) \geq g+1 \text{ for some } n\right) \leq \sum_{n \geq m} P\left(r^*_h,A(n) \geq g+1\right)$$

$$\leq \sum_{n \geq m} C_{h,\varepsilon} n^{-\varepsilon(g+1)}.$$  

If $g \geq \frac{2}{m}$, the last sum is $O(1/m)$. Thus, if it is the case,

$$P\left(r^*_h,A(n) \leq g \text{ for every } n\right) = 1 - P\left(r^*_h,A(n) \geq g+1 \text{ for some } n\right)$$

$$\geq 1 - O\left(\frac{1}{m}\right).$$
The next “simple” lemma is the key idea of the proof of Theorem 1.2. Making an abuse of notation, we also denote by $B_h[g]$ (resp. $B_h^*[g]$) the class of the sequences having the $B_h[g]$ (resp. $B_h^*[g]$) property.

**Lemma 3.9.**

$$B_h^*[g] \cap B_{h-1}[k] \subseteq B_h[hkg].$$

**Remark 3.10.** In fact, the “true” lemma, which is a little more ugly, is

$$B_h^*[g] \cap B_{h-1}[k] \subseteq B_h[g(h(k-1)+1)]$$

and this is what we will prove. As an example, a sequence $A$ with $r_A^3(n) \leq g$ which is a Sidon sequence is also a $B_3[g]$ sequence, i.e. $B_3^*[g] \cap B_2[1] \subseteq B_3[g]$, since in this case two representations that share one element share the three of them.

**Proof.** We proceed by contradiction. Suppose that $A \in B_h^*[g] \cap B_{h-1}[k]$ and suppose that there is an $n$ with $g(h(k-1)+1)+1$ distinct representations as a sum of $h$ elements of $A$.

Fix one of these representations, say $n = x_1 + x_2 + \cdots + x_h$. How many representations of $n$ can intersect with it? Well, the number of representations of $n$ that involve $x_1$ is at most $k$, since $A \in B_{h-1}[k]$. So we have at most $k-1$ more representations with $x_1$. The same thing happens for $x_2, \ldots, x_h$. So, finally, the maximum number of representations that can intersect with the one we fixed is $h(k-1)$.

Now we fix a second representation of $n$ that does not intersect with the first one that we chose. Again, there are at most $h(k-1)$ representations that intersect with our new choice.

After $g$ disjoint choices, counting them and all the representations that intersect with each one of them, we have at most $gh(k-1)+g$ representations. By hypothesis, there is at least one representation of $n$ left that does not intersect with any of our $g$ choices. But this means that we have $g+1$ disjoint representations of $n$, which contradicts the fact that $A \in B_h^*[g]$. □

**Proposition 3.11.** For every $h \geq 2$ and $0 < \varepsilon < 1/h$ a random sequence in $S(1 - \frac{1}{h} + \varepsilon, m)$ is a $B_h[g]$ sequence for every $g \geq c_h/\varepsilon$ with probability $1 - O(\frac{1}{m})$, where $c_h = 2^{h-3}h(h-1)^2$.

**Proof.** We proceed by induction on $h$.

For $h = 2$, and using Proposition 3.8, the result is true since a $B_2^*[g]$ sequence is the same that a $B_2[g]$ sequence.

Now suppose that the result is true for $h-1$. Let $\alpha = 1 - \frac{1}{h} + \varepsilon$. From Proposition 3.8 we know that a random sequence in $S(\alpha, m)$ is $B_h^*[g_1]$ for every $g_1 \geq \frac{c_h}{\varepsilon}$ with
probability $1 - O\left(\frac{1}{m}\right)$. But, since $\alpha > 1 - \frac{1}{n+1} + \frac{1}{m(n-1)}$, by the induction hypothesis we know that this random sequence is also $B_{h-1}[g_2]$ for every $g_2 \geq h(h-1)c_{h-1} = c_h/2$ with probability $1 - O\left(\frac{1}{m}\right)$. So, with probability $1 - O\left(\frac{1}{m}\right)$ the two things happen at the same time, i. e. the random sequence is in $B_{h}^{\alpha}[g_1] \cap B_{h-1}[g_2]$ for every $g_1 \geq \frac{2}{\alpha^2}$ and $g_2 \geq c_h/2$.

Lemma 3.9 concludes the proof.

Lemma 3.2 and Proposition 3.11 imply Theorem 1.2.

4. Sequences with $r_{3,A}(n)$ bounded

Now\(^3\), we will try to find a more precise relation between $g$ and $\varepsilon$. In fact, the result of Erdős and Rényi in [4] is more precise than what we said in the Introduction. They proved that for every $g > \frac{1}{\varepsilon^2} - 1$ there is a $B_{2}[g]$ sequence, $A$, with $A(x) \gg x^{1/2-\varepsilon}$. Stated perhaps in a more convenient way, what they proved is that for every positive integer $g$ there is a sequence $A$ such that $r_{2,A}(n) \leq g$ with $A(x) \geq x^{1/(g^{1/2} + o(1))}$ as $x \to \infty$.

In [2] the first author used the “alteration method” (perhaps our random sequences do not satisfy what we want but they do if we remove “a few” elements) to prove that for every $g > \frac{1}{\varepsilon^2} - \frac{1}{2}$ there is a $B_{2}[g]$ sequence, $A$, with $A(x) \gg x^{1/2-\varepsilon}$. In other words, for every positive integer $g$ there is a sequence $A$ such that $r_{2,A}(n) \leq g$ with $A(x) \gg x^{1/(g^{1/2} + o(1))}$ as $x \to \infty$.

In this section we will use the ideas from [2] to prove Theorem 1.3, which is a refinement on the dependence between $g$ and $\varepsilon$, for sequences with $r_{3,A}(n) \leq g$.

Definition 4.1. Given a sequence of positive integers, $A$, we say that $x$ is $(g + 1)_{h}\text{bad}$ (for $A$) if $x \in A$ and there exist $x_1, \ldots, x_{h-1} \in A$, $x_1 \leq \cdots \leq x_{h-1} \leq x$, such that $r_{h,A}(x_1 + \cdots + x_{h-1} + x) \geq g + 1$.

In other words, $x \in A$ is $(g+1)_{h}\text{bad}$ if it is the largest element in a representation of an element that has more than $g$ representations as a sum of $h$ elements of $A$. Observe that $A$ is a $B_{h}[g]$ sequence if and only if it does not contain $(g+1)_{h}\text{bad}$ elements.

Definition 4.2. A sequence of positive integers, $A$, is in $\tilde{B}_{h}[g]$ if the number of $(g+1)_{h}\text{bad}$ elements less than or equal to $x$ for $A$, say $\mathcal{B}(x)$, is

$$\mathcal{B}(x) = o(A(x)) \text{ when } x \to \infty.$$  

\(^3\)Of course, our Proposition 3.11 gives a relation between $g$ and $\varepsilon$, but observe that for $g = 1$ it gives values of $\varepsilon \geq 1$, so it does not give any useful information. In our terminology, this is not a “satisfactory enough exponent”.
So, \(A \in \tilde{B}_h[g]\) if removing a few elements from it (“a little o”), it is a \(B_h[g]\) sequence.

**Notation 4.3.** We denote by \(B_{k,h}(g+1)\) the set of \((g+1)\) bad elements for \(A\) in the interval \([h^k, h^{k+1})\).

Substituting \(r_{h,A}\) by \(r_{h,A}^*\), we define the \((g+1)\) bad elements for \(A\). Analogously, we define \(A \in \tilde{B}_{k,h}^*[g]\) and \(B_{k,h}^*[g]\).

Obviously, the “tilde” version of Lemma 3.9 is also true. In particular, from Remark 3.10:

**Lemma 4.4.** \(\tilde{B}_3^*[g] \cap \tilde{B}_2[1] \subseteq \tilde{B}_3^*[g]\).

Now we can write the next theorem, which we will use only in the cases \(h = 2\) and \(h = 3\).

**Theorem 4.5.** Given \(0 < \delta < \frac{1}{2h-3}\) and \(h \geq 2\), a random sequence \(A\) in \(S\left(\frac{2h-4}{2h-3} + \delta, m\right)\) is \(\tilde{B}_3^*[g]\) for every \(g > \frac{h+1}{2h-3} - \frac{(h-1)\delta}{h\delta} + \frac{1}{\log m}\) with probability \(1 - O\left(\frac{1}{\log m}\right)\).

**Proof.** We consider a random sequence \(A\) in \(S(\alpha, m)\).

\[
\mathbb{E}(|B_{k,h}^*(g+1)|) = \sum_{h^k \leq x < h^{k+1}} \mathbb{P}(x \text{ is } (g+1)_h^* \text{ bad}) \leq \sum_{h^k \leq x < h^{k+1}} \sum_{\bar{x}_{g+1} = (y_1, \ldots, y_{h-1}, x)} \prod_{y_1 \leq \cdots \leq y_{h-1} \leq x} \mathbb{P}(z \in A) \cdot \prod_{i=1}^{g} \prod_{z \in \text{Set}(\bar{x}_i)} \mathbb{P}(z \in A) \quad \text{pairwise disjoint}
\]

\[
\leq \sum_{h^k \leq n < h^{k+2}} \left( \sum_{\bar{x} \in R_h(n)} \prod_{x \in \text{Set}(\bar{x})} \mathbb{P}(x \in A) \right)^{g+1} \leq \sum_{h^k \leq n < h^{k+2}} \left( Cn^{h(1-\alpha)-1} \right)^{g+1} \ll \sum_{h^k \leq n < h^{k+2}} n^{(h-1-h\alpha)(g+1)} \ll h^{k((h-1-h\alpha)(g+1)+1)}
\]

when \(k \to \infty\), where we have used Lemma 3.5.
Now, we can use Markov’s Inequality\(^4\) to have:

\[
P(|\mathcal{B}_{k,h}^*(g + 1)| \geq k^2 E(|\mathcal{B}_{k,h}^*(g + 1)|)) \leq \frac{1}{k^2}.
\]

Since \(|\mathcal{B}_{k,h}^*(g + 1)| = 0\) for \(h^{k+1} < m\) we have

\[
P(|\mathcal{B}_{k,h}^*(g + 1)| \geq k^2 E(|\mathcal{B}_{k,h}^*(g + 1)|)) \leq \sum_{k \geq \log_h m - 1} \frac{1}{k^2} = O\left(\frac{1}{\log m}\right),
\]

so with probability \(1 - O\left(\frac{1}{\log m}\right)\) we have that \(|\mathcal{B}_{k,h}^*(g + 1)| \ll k^2 h^{(h-1-h\alpha)(g+1)}\) for every \(k\).

On the other hand, by Theorem 3.2 we know that \(A(x) \gg x^{1-\alpha}\) with probability 1.

So, given \(x\), we will have \(h^l \leq x < h^{l+1}\) for some \(l\) and with probability \(1 - O\left(\frac{1}{\log m}\right)\) the number of bad elements less than or equal to \(x\) will be

\[
\mathcal{B}(x) \leq \sum_{k=0}^{l} |\mathcal{B}_{k,h}^*(g + 1)| \ll l^2 h^{(h-1-h\alpha)(g+1)}
\]

while the number of elements in \(A\) less than or equal to \(x\) will be

\[
A(x) \gg h^{l(1-\alpha)}.
\]

Since, in order for \(A\) to be in \(\tilde{B}_h^*[g]\), we want \(\mathcal{B}(x) = o(A(x))\) we need

\[
(h - 1 - h\alpha)(g + 1) + 1 < 1 - \alpha
\]

and so, with \(\alpha = \frac{2h-4}{2n-3} + \delta\) we have

\[
g > \frac{h-1}{2n-3} - (h-1)\delta.
\]

\[\square\]

In particular, for \(h = 2\), since a \(\tilde{B}_2^*[g]\) sequence is also a \(\tilde{B}_2[g]\) sequence, we deduce that given \(0 < \varepsilon < \frac{1}{3}\), a random sequence \(A\) in \(S\left(\frac{2}{3} + \varepsilon, m\right)\) is \(\tilde{B}_2[1]\) with probability \(1 - O\left(\frac{1}{\log m}\right)\).

Also, for \(h = 3\), we deduce that given \(0 < \delta < \frac{1}{3}\), a random sequence \(A\) in \(S\left(\frac{2}{3} + \delta, m\right)\) is \(\tilde{B}_3^*[g]\) for every \(g > 2\frac{2}{93} - \frac{2}{3}\) with probability \(1 - O\left(\frac{1}{\log m}\right)\).

Lemma 4.4 gives the proof of Theorem 1.3.

\(^4\)Markov’s Inequality. For a random variable \(X\) and \(a > 0\), \(\Pr(|X| \geq a) \leq \frac{\E(|X|)}{a}\).
References


Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departamento de Matemáticas. Universidad Autónoma de Madrid, 28049 Madrid. Spain.
E-mail address: franciscojavier.cilleruelo@uam.es

Department of Algebra and Number Theory Eötvös Loránd University Pázmány Péter Sétány 1/c H-1117 Budapest, Hungary
E-mail address: kisspest@cs.elte.hu

E-mail address: ruzsaa@renyi.hu

Departamento de Matemáticas. Universidad Autónoma de Madrid, 28049 Madrid. Spain.
E-mail address: c.vinuesa@uam.es