LECTURE 1.
1.1 Introduction
 1.1.1 Discovering hydrocarbon fields
 1.1.2. Images: compression and edge detection
1.2 A tool: The Fourier Transform
1.3 Sampling Theorem
1.4 Discrete Fourier Transfrom (DFT)
1.5 Fast Fourier Transform (FFT)

LECTURE 2.
2.1 Introduction to wavelets
2.2 Haar and Shannon wavelets
 2.2.1 The Haar wavelet
 2.2.2 The Shannon wavelet
2.3 Multiresolution analysis (MRA) and properties

LECTURE 3.
3.1 Designing wavelets from and MRA
 3.1.1 Filters associated with an MRA
 3.1.2 Mallat’s recipe for design wavelets
3.2 Fast wavelet transform

LECTURE 4.
4.1 Properties of wavelets
4.2 Properties of filter coefficients
4.3 Daubechie’s filter of order 4
4.4 Image processing with orthonormal wavelets

LECTURE 5: The JPEG format for images
5.1 Discrete cosine transform (DCT)
5.2 2-D discrete cosine transform (2-DCT) for images
5.3. Biorthogonal systems and JPEG 2000
5.4 Huffman encoding
LECTURE 1

1.1. INTRODUCTION

1.1.1. Discovering hydrocarbon fields.

Transparency of Talk UC3M-2015-EH

To study a wave \(f(t) \), \(0 \leq t \leq 1 \), try to write \(f \) as a
superposition of "fundamental waves"

\[
f(t) = \sum_{k=-\infty}^{\infty} c_k \cos k \omega t + \sum_{k=1}^{\infty} b_k \sin k \omega x + \sum_{k=1}^{\infty} c_k \sin k \omega t.
\]

Since \(e^{ix} = \cos x + i \sin x \) (Euler), one could try

\[
f(t) = \sum_{k=-\infty}^{\infty} c_k e^{ik \omega t}.
\]

Since \(\int_{-\infty}^{\infty} e^{ik \omega t} e^{-i \omega t} \, dt = 2 \pi \delta_{ik} \), it follows that \(C_k = \int_{0}^{1} f(t) e^{-ik \omega t} \, dt = \hat{f}(k) \).

If the wave last for \(T \) seconds, examine \(f \) in each interval \([nT, (n+1)T]\), \(0 \leq T-1 \) the signal \(f \) \(X_{\text{in},n+1} \) to write

\[
f(t) = \sum_{n=-\infty}^{\infty} \sum_{k=0}^{\infty} c_{kn} e^{i2\pi k \omega t} \cdot X_{\text{in},n+1}(t)
\]

with \(c_{kn} = \int_{0}^{1} f(t) e^{-ik \omega t} \, dt \). More generally, one can
consider systems of the form \(f \) \(X(t) = \sum_{n=0}^{\infty} X_n(t) \), which
leads to Gabor systems to study singularities of waves.
1.1.2. Images: compression and edge detection

Introduction to the article of the Revista de la Unión Matemática Argentina - 2004

Divide E_0, J^2 on equal "pixels" of size 2^{-j} to obtain $I_{k,e}^{(i)} = \left[\frac{k}{2^j}, \frac{k+1}{2^j} \right] \times \left[\frac{e}{2^j}, \frac{e+1}{2^j} \right]

0 \leq k < 2^j, 0 \leq e < 2^j

If the picture is represented by $f(x,y)$ on E_0, J^2, a way to represent f is to observe the slight subunity over each pixel,

$$p_{k,e}^{(i)} = \frac{1}{I_{k,e}^{(i)}} \int_{I_{k,e}^{(i)}} f(x,y) \, dx \, dy$$

Again, we have

$$f(x,y) \sim \sum_{k=0}^{2^j-2} \sum_{e=0}^{2^j-2} p_{k,e}^{(i)} I_{k,e}^{(i)} (x,y)$$

One could also consider expansions of the form

$$f(x,y) \sim \sum_{k=0}^{2^j-2} \sum_{e=0}^{2^j-2} p_{k,e}^{(i)} \Phi_{k,e}^{(i)} (x,y)$$

with $\Phi_{k,e}^{(i)} (x) = 2^j \phi (2^j x - k, e)$ for appropriate ϕ. These would lead to wavelets

1) Compression: find a good approximation to f
 with a small number of coefficients.

2) Edge detection: position of large coefficients will
determine the edge of the image.
1.2 A Tool: The Fourier Transform in \mathbb{R}^n

For $f \in L^1(\mathbb{R}^n)$,

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} \, dx, \quad \xi \in \mathbb{R}^n$$

$F: L^1(\mathbb{R}^n) \to L^\infty(\mathbb{R}^n)$ with $\|F\| \leq 1$ and F is a continuous function by the LDC Theorem.

Ex 1.1. Show that if $f(x) = \frac{1}{T} \chi_{[-\frac{T}{2}, \frac{T}{2}]}(x)$, $x \in \mathbb{R}$, then

$$\hat{f}(\xi) = \frac{\sin \pi \xi T}{\pi \xi T} \quad (\text{sinc}(T\xi))$$

Ex 1.2. Show that if $f(x) = e^{-\frac{|x|^2}{2}}$, $x \in \mathbb{R}$, then

$$\hat{f}(\xi) = \frac{1}{\sqrt{2\pi}} e^{-\frac{\xi^2}{2}}$$

"The Fourier transform of two different signals may be similar" (Talk UCBM - 2015)

F defined on $L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ can be extended to $L^2(\mathbb{R}^n)$ and $F: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ with $\|F\| = 1$, i.e., $\|Ff\|_{L^2(\mathbb{R}^n)} = \|f\|_{L^2(\mathbb{R}^n)}$ (Plancherel Thm). The inverse of F is

$$F^{-1}g(x) = \int_{\mathbb{R}^n} g(\xi) e^{\frac{2\pi i x \cdot \xi}{\xi^2}} \, d\xi$$

Since $L^2(\mathbb{R}^n)$ is a Hilbert space, polarization gives

$$\langle Ff, Fg \rangle = \langle f, g \rangle \quad \forall f, g \in L^2(\mathbb{R}^n) \text{ (Parserval)}$$

Poisson Summation Formula (PSF): \[\sum_{k \in \mathbb{Z}^n} \hat{f}(x+k) = \sum_{k \in \mathbb{Z}^n} \hat{f}(k) e^{2\pi i x \cdot k} \text{ (PSF1)} \]

for $f \in \mathcal{S}(\mathbb{R}^n)$, and \[\sum_{k \in \mathbb{Z}^n} \hat{f}(k) e^{-2\pi i x \cdot k} = \sum_{k \in \mathbb{Z}^n} \hat{f}(x+k) \text{ (PSF-2)} \]

Ex 1.3
1.3 SAMPLING THEOREM

\[f(t), t \in \mathbb{R}; T > 0 \]

Sampling rate: \(\frac{1}{T} \)

Consider \(\{f(\frac{k}{T})\}_{k \in \mathbb{Z}} \)

C. Shannon (1948) and also Wiener (1936) proved that if \(\text{sup} \, \mathcal{F}f \subseteq \left[\frac{-T}{2}, \frac{T}{2} \right] \), then \(f \) can be recovered precisely with samples \(\{f(\frac{k}{T})\}_{k \in \mathbb{Z}} \) by means of combinations of interpolations of sinc functions.

\[\mathcal{F} \text{L}(\mathbb{R}) \text{ and } \text{sup} \, \mathcal{F}f \subseteq \left[\frac{-T}{2}, \frac{T}{2} \right], T > 0. \text{ Then} \]

\[f(x) = \sum_{k=-\infty}^{\infty} f\left(\frac{k}{T}\right) \frac{\sin \pi(Tx-k)}{\pi(Tx-k)} \quad \times \in \mathbb{R} \]

\(\text{Convergence in } L^2(\mathbb{R}) \).

\[\mathcal{F}f = \mathcal{F}F \text{ where } F \text{ is entire on } \mathbb{C} \text{ of exponential type. It makes sense to consider } f\left(\frac{k}{T}\right). \]

See § 1.2 in my "Notes" or § 6.1 in [HWJ].

Uses:

- PFS-2;
- Inversion formula;
- Ex. 1.1.

Since

\[\int_{-\frac{T}{2}}^{\frac{T}{2}} e^{2\pi i(x-\frac{k}{T})s} ds = \frac{\sin \pi(Tx-k)}{\pi(Tx-k)} \]

\[= \delta_t(x-\frac{k}{T}) \]

(follows from Exercise 4.1, changing

\[s \leftrightarrow x-\frac{k}{T} \])

\[\mathcal{F}^{-1}\left(\frac{h_T(x-k)}{\pi(Tx-k)} \right) = \frac{\sin \pi(Tx-k)}{\pi(Tx-k)} = \delta_t \left(x - \frac{k}{T} \right) \]
Take Fourier in sampling formula:

\[
\hat{Fc}(\xi) = \sum_{k=-\infty}^{\infty} c(k/T)^{2 \pi i \xi k} = \sum_{k=-\infty}^{\infty} c(k/T)^{2 \pi i \xi k} e^{-2\pi i \xi k/T}
\]

\[
= \frac{1}{T} \left(\sum_{k=-\infty}^{\infty} c(k/T) e^{-2\pi i \xi k/T} \right) \chi_{[-T/2, T/2]}(\xi)
\]

(This formula appears in the proof of the sampling theorem.)

\[
\left(\sum_{k=-\infty}^{\infty} c(k/T)^{2 \pi i \xi k} \right) \chi_{[-T/2, T/2]}(\xi) = \hat{f}(\xi)
\]

Explain aliasing phenomena when sampling rate is higher than Shannon sampling rate: \(T_0 \) s.t. \(\text{supp} \hat{f} \subset [-T_0, T_0] \) (Smallest \(T_0 \))

Sampling rate: \(T_0(f) = \text{smallest } T \text{ s.t. } \text{supp} \hat{f} \subset [-T/2, T/2] \)
Proof of Sampling Theorem

Show:

\[
\left(\sum_{k=-\infty}^{\infty} F \mathbf{f} (\xi + T k) \right) \chi_{\left[\frac{-T}{2}, \frac{T}{2} \right]} (\xi) = F \mathbf{f} (\xi)
\] (1)

Consider \(g(x) = \frac{1}{T} \mathbf{f} \left(\frac{x}{T} \right) \):

\[
F g(\xi) = \frac{1}{T} \int_{-\infty}^{\infty} g(x) e^{-2\pi i \xi x} \, dx = \int_{-\infty}^{\infty} \mathbf{f}(y) e^{-2\pi i \xi \frac{T y}{T}} \, dy = F \mathbf{f} (\xi T)
\]

PSF-2 \Rightarrow

\[
\frac{1}{T} \sum_{k=-\infty}^{\infty} \mathbf{f} \left(\frac{k}{T} \right) e^{-2\pi i \xi \frac{k}{T}} \leq \sum_{k=-\infty}^{\infty} F \mathbf{f} (\xi + k T), \xi \in \mathbb{R}
\]

Change \(\xi \) to \(\frac{\xi}{T} \) to conclude,

\[
\frac{1}{T} \sum_{k=-\infty}^{\infty} \mathbf{f} \left(\frac{k}{T} \right) e^{-2\pi i \frac{k}{T} \xi} = \sum_{k=-\infty}^{\infty} F \mathbf{f} (\xi + k) , \xi \in \mathbb{R}
\] (2)

Replacing in (1)

\[
\frac{1}{T} \left(\sum_{k=-\infty}^{\infty} \mathbf{f} \left(\frac{k}{T} \right) e^{-2\pi i \frac{k}{T} \xi} \right) \chi_{\left[\frac{1}{2}, \frac{1}{2} \right]} (\xi) = F \mathbf{f} (\xi)
\] (3)

Take the inverse Fourier transform of both sides

\[
\mathbf{f}(x) = \int_{-\infty}^{\infty} \frac{1}{T} \left(\sum_{k=-\infty}^{\infty} \mathbf{f} \left(\frac{k}{T} \right) e^{-2\pi i \frac{k}{T} \xi} \right) e^{2\pi i \xi _{T} x} \, dx
\]

\[
= \frac{1}{T} \sum_{k=-\infty}^{\infty} \mathbf{f} \left(\frac{k}{T} \right) \int_{-\infty}^{\infty} e^{2\pi i \left(x - \frac{k}{T} \right) \xi} \, dx
\]

\[\text{(Ex 4.1)}\]

\[
= \frac{1}{T} \sum_{k=-\infty}^{\infty} \mathbf{f} \left(\frac{k}{T} \right) \frac{\sin \pi \left(\frac{Tx}{T} \right)}{\pi \left(\frac{Tx}{T} \right)}
\]

\[\text{for } x = \frac{k}{T}\]
1.5. FAST FOURIER TRANSFORM (FFT)

(DFT) \(\hat{f}(k) = \sum_{n=0}^{N-1} f(n) e^{-\frac{2\pi i kn}{N}} \), \(d=0 \), \(k=0, \ldots, N-1 \)

DFT requires \(\approx N^2 \) operations \(\text{(additions + multiplications)} \).

FFT is an algorithm to compute DFT when \(N = 2^L \), and reduces the complexity of computations to \(\approx N \cdot \log_2 N \).

For even frequencies:

\[
\hat{f}(2k) = \sum_{n=0}^{N/2-1} f(n) e^{-\frac{2\pi i 2kn}{N}} + \sum_{n=N/2}^{N-1} f(n) e^{-\frac{2\pi i 2kn}{N}}
\]

\[
= \sum_{n=0}^{N/2-1} f(n) e^{-\frac{2\pi i kn}{N/2}} + \sum_{m=0}^{N/2-1} f(m+N/2) e^{-\frac{2\pi i km}{N/2}}
\]

\[
= \sum_{n=0}^{N/2-1} \left[f(n) + f(n+N/2)\right] e^{-\frac{2\pi i kn}{N/2}} \quad (6)
\]

\(\hat{f}(2k) \) can be computed using FFT of \(f_0(n) = f(n) + f(n+N/2) \in S_{N/2} \).

For odd frequencies:

\[
\hat{f}(2k+1) = \sum_{n=0}^{N/2-1} f(n) e^{-\frac{2\pi i (2k+1)n}{N}} + \sum_{n=N/2}^{N-1} f(n) e^{-\frac{2\pi i (2k+1)n}{N}}
\]

\[
= \sum_{n=0}^{N/2-1} e^{-\frac{2\pi i kn}{N/2}} f(n) e^{-\frac{2\pi i kn}{N/2}} + \sum_{m=0}^{N/2-1} e^{-\frac{2\pi i km}{N/2}} f(m+N/2) e^{-\frac{2\pi i km}{N/2}}
\]

\[
= \sum_{n=0}^{N/2-1} e^{-\frac{2\pi i kn}{N/2}} \left[f(n) - f(n+N/2)\right] e^{-\frac{2\pi i kn}{N/2}} \quad (7)
\]

\(\hat{f}(2k+1) \) can be computed using FFT for \(f_1(n) = e^{-\frac{2\pi i n}{N}} [f(n) - f(n+N/2)] \in S_{N/2} \).
1.4 DISCRETE FOURIER TRANSFORM (DFT)

"Signals are sampled and represented by numbers"

Sample rate \(T = 1 \) if \(\{ f(n) \}_{n \in \mathbb{Z}} \); in practice only \(N \) samples are taken, \(f = \{ f(n) \}_{n = 0}^{N-1} \) is a \(\text{discrete} \) \(\text{finite} \) \(\text{signal} \) of size \(N \).

Fourier transform has to be defined in this context. \(S_N \) = \(\text{discrete} \) (complex) \(\text{signals} \) of size \(N \); \(S_N \) is a Hilbert space with inner product (of \(\text{dim} \ N \))

\[
\langle f, g \rangle = \sum_{n=0}^{N-1} f(n) \overline{g(n)}
\]

(4)

Thm 4.2

\[
\{ e_k(n) \}_{k \in \mathbb{Z}} = \left\{ \left(\frac{e^{2 \pi i kn}}{N} \right) \right\}_{n=0}^{N-1}
\]

is an \(\text{ortho} \) \(\text{basis} \) of \(S_N \).

\(\therefore \) See page 1.2.3 of my notes

\[x \]

If \(f \in S_N \), \(f = \sum_{k=0}^{N-1} \lambda_k e_k \) and \(\langle f, e_m \rangle = \sum_{k=0}^{N-1} \lambda_k \overline{e_k(m)} \)

\[
\sum_{k=0}^{N-1} \lambda_k \overline{e_k(m)} = \lambda_m \Rightarrow \lambda_m = \frac{1}{N} \sum_{k=0}^{N-1} \langle f, e_k \rangle e_k
\]

(5)

and

\[
N \rightarrow k \sum_{k=0}^{N-1} \frac{1}{N} \overline{e_k(m)} e_k
\]

\(\text{Notation: } \hat{f}(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} f(n) e^{-2\pi i kn/N} \) in DFT of \(f \)

\(k = 0, 1, \ldots, N-1 \)

(5) \(\Rightarrow \hat{f}(n) = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \hat{f}(k) e^{2\pi i kn/N} \) (Inverse DFT)

Ex 1.3. Plancherel: if \(f \in S_N \), \(\| f \|^2 = \frac{1}{N} \sum_{k=0}^{N-1} \left| \hat{f}(k) \right|^2 \).
\[C(N) = \text{# of complex operations needed to calculate DFT using} \]
\[(6) \text{ and (7) for } N = 2^e \]
\[(6) \quad (7) \]
\[C(N) = 2C\left(\frac{N}{2}\right) + \frac{N}{2} + \left(\frac{N}{2} + \frac{N}{2}\right) = 2C\left(\frac{N}{2}\right) + \frac{3N}{2} \]
\[\text{and } C(1) = 0 \text{ because if } f \in S_1, \quad \hat{f}(0) = f(0) \]
\[C(2^1) = 2C(2^{1-1}) + \frac{3}{2} \cdot 2^1 = 2 \left[2C(2^{2-2}) + \frac{3}{2} \cdot 2^{2-1} \right] + \frac{3}{2} \cdot 2^1 \]
\[= 4C(2^{1-2}) + 2 \cdot \frac{3}{2} \cdot 2^1 = 4 \left[2C(2^{2-3}) + \frac{3}{2} \cdot 2^{2-2} \right] + 2 \cdot \frac{3}{2} \cdot 2^1 \]
\[= 2^3 C(2^{1-3}) + 3 \cdot \frac{3}{2} \cdot 2^1 = 8 \text{ times} \]
\[= 2^e C(1) + e \cdot \frac{3}{2} \cdot 2^1 = \frac{3}{2} \cdot e \cdot 2^1 = \frac{3}{2} \cdot N \log_2 N \]
\[\times \]

\[\sum_{n_1 \in N} \sum_{n_2 \in N} \sum_{n_3 \in N} \sum_{n_4 \in N} \sum_{n_5 \in N} \sum_{n_6 \in N} \sum_{n_7 \in N} \sum_{n_8 \in N} \]
LECTURE 2

2.1. INTRODUCTION TO WAVELETS

History of wavelets: From my talk at UCM3 - 2015
- \(\{ e^{2\pi i x \chi_{[k,k+1]}(x)} : k \in \mathbb{Z}, k \in \mathbb{Z} \} \) is an o.n.b. of \(L^2(\mathbb{R}) \)

\[\frac{1}{\sqrt{n}} \sum_{j=k} \hat{f}(w) e^{2\pi i x \chi_{[k,k+1]}(x)} \] Geometric system

When \(w \in \mathbb{Z} \), \(\hat{f} \) is an o.n.b. of \(L^2(\mathbb{R}) \)?

[Balian- low '80s]: If \(\hat{f} \) is an o.n.b. of \(L^2(\mathbb{R}) \), then either
\[\int_{-\infty}^{\infty} x^2 |\hat{f}(x)|^2 dx = \infty \] or \[\int_{-\infty}^{\infty} \left(\sum_{j=-\infty}^{\infty} \hat{f}(j) e^{2\pi i j x} \right)^2 dx = \infty \]

Ex 2.1. Let
\[f(x) = \begin{cases} 2x+1 & \text{if } -\frac{1}{2} \leq x < 0 \\ -2x+1 & \text{if } 0 \leq x < \frac{1}{2} \\ 0 & \text{otherwise} \end{cases} \]

Show that \(\hat{f} \) is not an o.n.b. of \(L^2(\mathbb{R}) \)

Translation: \(T_y f(x) = f(x - y) \); Modulation: \(M_y f(x) = e^{2\pi i xy} f(x) \)
- I.e., \(\hat{f}(y) = \{ M_{2^k}(T_y^{-1}) \hat{f}(x) : k \in \mathbb{Z} \} \)

Dilation: \(D_a f(x) = a^k f(a^{-1} x) \), \(a > 0 \).

- \(\| D_a f \|_{L^2(\mathbb{R})}^2 = \int_{-\infty}^{\infty} a^{2k} |f(a^{-1} x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(y/a)|^2 dy = \| f \|_2^2 \)

Define \(W \in L^2(\mathbb{R}) \):
\[W(y) = \{ D_0 T_y \hat{f}(x) = f(x) : k \in \mathbb{Z} \} \]

- \(W(y) = D_0(T_{2k} f)(x) = 2^{k/2} T_{2k} f(2x) = 2^{k/2} f(2x - k) \)

Def 2.1. \(\psi \in L^2(\mathbb{R}) \) is an orthonormal wavelet if \(W(\psi) \) is an o.n.b. of \(L^2(\mathbb{R}) \).
If \(\text{supp} \, \Phi_{j,k} = [k/2^j, (k+1)/2^j] \), draw \(\Psi_{j,k} : = D_2 \Psi_{1,j,k} \) for \(j \) large in \(\mathbb{Z}^+ \) and \(j' \) large in \(\mathbb{Z}^- \).

\[
\text{Supp} \, \Psi_{j,k} : -1 \leq x - k \leq 1 \Rightarrow \frac{k-1}{2^j} \leq x \leq \frac{k+1}{2^j}.
\]

\(\Psi_{j,k} \) concentrated around \(\frac{k}{2^j} \)

\(\text{Good to detect} \)

\(\text{details of a} \)

\(\text{spectral} \)

\(\text{Very spread out} \)

\(\text{Small amplitude: Good to detect the few decay of a spectral} \)

\[x\]

2.2 Haar and Shannon Wavelets

2.2.1. The Haar Wavelet

\[\psi(x) = \begin{cases} 1 & \text{if } 0 \leq x < \frac{1}{2} \\ -1 & \text{if } \frac{1}{2} \leq x \leq 1 \end{cases} \]

\(\psi \) is an orthonormal wavelet in \(L^2(\mathbb{R}) \).

- O.N. System: Several steps (See § 3.2 of my notes)
- Basis: Postpone until we know MRAS

Ex 2.2. Find the Haar coefficients \(\langle f, \psi_{j,k} \rangle \) for all \(f, \psi_{j,k} \) when \(f = X_{c_0, \xi} \).
2.2.2. THE SHANNON WAVELET

\[\psi \text{ o t. } F\psi (t) = \chi(t) \]
\[\mathcal{F}\chi(t) = \begin{cases} 1 & \text{for } -\frac{1}{2} \leq t \leq \frac{1}{2} \\ 0 & \text{otherwise} \end{cases} \]

\[\|\psi\|_2 = 1 \]

Ex 2.3. Show that \(\psi(x) = \frac{\sin(2\pi x) - \sin(\pi x)}{\pi x} \), \(\psi(0) = 1 \)

To show, we need properties of \(\mathcal{F} \) and operators

Prop. 2.2 \(\psi \in L^2(\mathbb{R}) \),

- a) \(\mathcal{F}(T_y \psi)(t) = M_y F\psi(t) \) \(\forall y \in \mathbb{R} \)
- b) \(\mathcal{F}(M_y \psi)(t) = T_y F\psi(t) \) \(\forall y \in \mathbb{R} \)
- c) \(\mathcal{F}(D_{a,\lambda} \psi)(t) = D_{a,\lambda} F\psi(t) \) \(\forall a > 0 \)

Proof

- For \(a) \)
 \[\mathcal{F}(T_y \psi)(t) = \int_{-\infty}^{\infty} T_y \psi(x) e^{-2\pi i x t} dx = \int_{-\infty}^{\infty} \psi(x+y) e^{-2\pi i x t} dx = e^{2\pi i y t} \]

Ex 2.4. Complete the proof of Prop. 2.2.

Ex 2.5. Prove

- a) \(\langle \psi_j, \chi_{j,k} \rangle = 0 \)
- b) \(\langle \psi_j, \chi_{j,k} \rangle = 0 \) \(\forall j, k \in \mathbb{Z} \), \(\forall \chi_{j,k} \in \mathcal{F} \chi_{j,k} \)
Basis: Enough to show that for all $f \in L^2(\mathbb{R})$

\[\|f\|_2^2 = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} |<f, \psi_{j,k}>|^2 \tag{1} \]

We need:

(A) \{ e^{2\pi i 2 \gamma j} \}_{j \in \mathbb{Z}} \text{ is an orthonormal basis of } L^2(-\frac{1}{2}, \frac{1}{2}) \cup \{ \frac{1}{2}, 1 \}

(B) \sum_{j \in \mathbb{Z}} \chi_\gamma(2^{\frac{1}{3}}) = 1 \text{ for all } \gamma \in \mathbb{R} - \{ 0 \}

\[
\sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} |<f, \psi_{j,k}>|^2 = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} |<f, \psi_{j,k}>|^2
\]

Exp. 2.2

\[
= \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \left| \int \overline{F_f(s)} e^{2\pi i \frac{2\gamma j}{s}} e^{-F_f(2^{\frac{1}{3}})ds} \right|^2
\]

\[
= \int \sum_{j \in \mathbb{Z}} \left| \int \overline{F_f(s)} e^{2\pi i \frac{2\gamma j}{s}} e^{-F_f(2^{\frac{1}{3}})ds} \right|^2 d\gamma
\]

\[
= \sum_{j \in \mathbb{Z}} \left| \int \overline{F_f(s)} e^{2\pi i \frac{2\gamma j}{s}} e^{-F_f(2^{\frac{1}{3}})ds} \right|^2 d\gamma
\]

\[
= \sum_{j \in \mathbb{Z}} \left| \int F_f(s)^2 ds \right|^2 = \sum_{j \in \mathbb{Z}} \chi_\gamma(2^{\frac{1}{3}}) |F_f(s)|^2 ds
\]

\[
= \int |F_f(s)|^2 ds = \|f\|_2^2.
\]

This proves (1).
2.3 Multiresolution Analysis and Properties

Definition 2.3: An MRA is a collection \(\{ V_j : j \in \mathbb{Z} \} \) of closed linear subspaces of \(L^2(\mathbb{R}) \) s.t.

1. \(V_j \subset V_{j+1} \) \(\forall j \in \mathbb{Z} \)
2. \(f \in V_j \Leftrightarrow \hat{f}(2^{-j} \cdot) \in V_{j+1} \)
3. \(\bigcap_{j \in \mathbb{Z}} V_j = \{ 0 \} \)
4. \(\bigcup_{j \in \mathbb{Z}} V_j = L^2(\mathbb{R}) \)
5. \(\exists \psi \in V_0 \) s.t. \(\{ T_{k \cdot} \psi : k \in \mathbb{Z} \} \) o.n. basis of \(V_0 \) (Scaling)

Remark 1: (1), (2) and (5) \(\Rightarrow \) (3) [see ChWJ, Thm 1.6 in Chapter 2.1]

Remark 2: If (1), (2) and (5) hold and \(|F \psi(k)| \) is continuous at \(0, \) then (4) \(\Rightarrow \) \(|F \psi(0)| = 1 \) [see Thm 1.7 in Chapter 2 of ChWJ]

Proposition 2.4: \(\| g \|_{L^2(\mathbb{R})} \) \(< \sum_{k \in \mathbb{Z}} \| F \psi(k \cdot) \|_2^2 = 1 \) a.e. \(g \in W_j \)

Proof: See page 3.3.3 of my Notes: Compute \(\langle g, T_k \psi \rangle_{L^2(\mathbb{R})} \).

Proposition 2.5: \(\psi \in L^2(\mathbb{R}) \) scaling function of an MRA - Let

\[\psi_{j,k}(x) = D_{2^j \cdot k} \psi (x) = 2^{j/2} \psi (2^j x - k). \]

Then \(\{ \psi_{j,k} : k \in \mathbb{Z} \} \) is an o.n. basis of \(V_j \)

Proof: See pages 3.3.4 and 3.3.5 of my Notes.
Interpretation of Properties (3) and (4):
\[P_{V_j} f : L^2(\mathbb{R}) \rightarrow V_j \text{ orthogonal projection. By Prop 2.5} \]
\[P_{V_j} f = \sum_{k \in \mathbb{Z}} \langle f \rangle_{V_{j+k}} \psi_{j+k} \quad (\in L^2(\mathbb{R})) \]
(2)

(3) \Rightarrow \lim_{j \to -\infty} ||P_{V_j} f||_2 = 0;
(4) = \lim_{j \to -\infty} ||P_{V_j} f - f||_2 = 0

\[P_{V_j} f \] is an approximation to \(f \) when \(j \to -\infty \). (Tendency)

Let \(W_j \) be s.t. \(V_j \oplus W_j = V_{j+1} \); \(P_{V_j} + P_{W_j} = P_{V_{j+1}} \)

\[P_{W_j} f = P_{V_{j+1}} f - P_{V_j} f \] encodes the difference of the image at different levels. This difference will be given with the wavelet to be constructed.

Example 1 (Haar MRA)

\[V_j = \{ f \in L^2(\mathbb{R}) : f \text{ constant on } [k \frac{1}{2^j}, (k+1) \frac{1}{2^j}) \}, k \in \mathbb{Z} \}

The scaling function is \(\psi(x) = \chi_{[0,1)}(x) \)

(1) \checkmark (2) Check (5) \checkmark (3) True by Remark 1

To see (4):

\[F \psi(s) = F(\chi_{[0,1)})(s) = e^{-i\pi s} \frac{\sin \pi s}{\pi s} \quad F \psi(0) = 1 \]

Since \(F \psi \) is continuous at \(s = 0 \), (4) follows from Remark 2.
Write formula (2) for the Haar MRA

$$\psi_{j,k} = 2^{j/2} \varphi \left(2^j x - k \right) = 2^{j/2} \chi_{E_{2^j}, 2^{-j}} (x)$$

$$\langle f, \psi_{j,k} \rangle = \int f(x) \overline{\psi_{j,k}(x)} \, dx = \int f(x) \cdot 2^{j/2} \, dx$$

$$V_j = \sum_{k \in \mathbb{Z}} 2^j \left(\sum_{\ell \in \mathbb{Z}} f(\ell) \chi_{E_{2^j}, 2^{-j}} \right) \chi_{E_{2^j}, 2^{-j}}$$

The coefficients of this approximation are the mean value of f over the interval $E_{2^j, 2^{-j}}$.

Example 2 (Shannon MRA)

Scaling function $\varphi : \mathcal{F}(f) = \chi_{E_{2^{j+1}}, 2^{-j+1}}$; $\varphi(x) = \frac{\sin \pi x}{\pi x}$

with $\varphi(0) = 1$.

$$V_0 = \text{span} \{ T_{ke} \varphi : k \in \mathbb{Z} \}.$$

Since $\sum_{k \in \mathbb{Z}} |T_{ke} \varphi|^2 = \int \varphi^2 = 1$ by Prop 2.2, \{ $\varphi(\cdot - t) : k \in \mathbb{Z}$ \} is an o.n. basis of V_0, which is (5).

Since $\mathcal{F}(T_{ke} \varphi) = e^{-2 \pi i ke} \mathcal{F}(\varphi)$

$$= e^{-2 \pi i ke} \chi_{E_{2^{j+1}}, 2^{-j+1}} \quad V_0 = \{ f \in L^2(\mathbb{R}) : \sup \mathcal{F} f \in L^2 \}$$

Define $V_j = \text{span} \{ \psi_{j,k} : k \in \mathbb{Z} \}$

$$\mathcal{F}(\psi_{j,k}) = \mathcal{F}(D_{2^j} T_{ke} \varphi) = D_{2^j} \mathcal{F}_{ke} \mathcal{F}(\varphi) = 2^{j/2} \mathcal{F}_{ke} \mathcal{F}(\varphi)$$

$$= 2^{j/2} e^{-2 \pi i e^2} \chi_{E_{2^j}, 2^{-j}} \quad V_j = \{ f \in L^2(\mathbb{R}) : \sup \mathcal{F} f \in L^2 \}$$

$$\therefore V_j = \{ f \in L^2(\mathbb{R}) : \sup \mathcal{F} f \in L^2 \}$$
(1) \checkmark, (2) \checkmark, (5) \checkmark \quad (3) \quad \text{follows by Remark 1}

Since \(F_1(0) = 1 \) & \(F_1(p) \) is constant at zero, (4) follows from Remark 2.
3.1 DESIGNING WAVELETS FROM AN MRA

3.1.1 FILTERS ASSOCIATED WITH AN MRA

\((V_j)_{j \in \mathbb{Z}}, \varphi \) is an MRA for \(L^2(\mathbb{R})\). \(\frac{1}{2} \varphi(\frac{x}{2}) \in V_1 \supseteq V_0 \)

\[\varphi(x) = \sum_{k \in \mathbb{Z}} h(k \varphi(x-k)) \text{ in } L^2(\mathbb{R}) \] \hspace{1cm} (1)

with

\[h(k) = \langle \frac{1}{2} \varphi(\frac{x}{2}), \varphi(x-k) \rangle = \int_{\mathbb{R}} \frac{1}{2} \varphi(\frac{x}{2}) \overline{\varphi(x-k)} \, dx \] \hspace{1cm} (2)

Take \(\hat{F} \) in (1)

\[(F \varphi)(2x) = \left(\sum_{k \in \mathbb{Z}} h(k) e^{-2\pi i kx} \right) \varphi(x) = h(x) \varphi(x) \] \hspace{1cm} (3)

and \(h(x) \) is called low pass filter of the MRA. (Also, the

transfomation function) and belongs to \(L^2(\mathbb{R}) \). since \(\{h(k)\} \in \ell^2(\mathbb{Z}) \)

Prop 3.1. The low pass filter \(h \) of an MRA satisfies

\[|h(0)|^2 + |h(\frac{1}{2})|^2 = 1 \text{ a.e. } x \in \mathbb{R} \] If \(\| \varphi \|_2 = 1 \), then \(|h(0)| = 1 \)

p/ See page 3.4.2 of my NOTES.

Ex 3.1. Consider Haar-MRA with scaling function \(\varphi = \chi_{[0,1]} \)

Show that \(h(0) = h(\frac{1}{2}) = \frac{1}{2} \) and \(h(k) = 0 \) of \(k \neq 0, 1 \).

Deduce that

\[h(x) = \frac{1}{2} + \frac{1}{2} e^{-2\pi i x} = e^{-i \pi x} \cos(2\pi x) \]

Ex 3.2. Consider Shannon-MRA with \(\varphi(x) = \frac{\sin(\pi x)}{\pi x}, \varphi(0) = 1 \).

Show that \(h(\frac{1}{2}) = \chi_{[-\frac{1}{2}, \frac{1}{2}]}(x) \) in \([-\frac{1}{2}, \frac{1}{2}] \).
3.1.2. Mallat's Recipe to Design Wavelets

Define \(W_0 = V_1 \). Define \(W_j = \{ g \in L^2(\mathbb{R}) : g \in W_0 \} \). It can be seen that \(V_j \oplus W_j = V_{j+1} \). Hence,

\[
V_{j+1} = V_j \oplus W_j = V_j \oplus W_j \oplus W_j = \cdots = \bigoplus_{k=-\infty}^{\infty} W_k \quad \text{(by (3))}
\]

Since \(\bigcup_{j} V_j = L^2(\mathbb{R}) \), \(L^2(\mathbb{R}) = \bigoplus_{k=-\infty}^{\infty} W_k \) \hspace{1cm} (4)

Strategy: Find \(\Psi \in W_0 \), i.e., \(\{ T_k \Psi : k \in \mathbb{Z} \} \) an o.n. basis of \(W_0 \). Then \(\{ T_k \Psi : k \in \mathbb{Z} \} \) is an o.n. basis of \(W_j \). By (4), \(\{ T_k \Psi : k \in \mathbb{Z} \} \) an o.n. basis of \(L^2(\mathbb{R}) \)

Properties of \(\Psi \)

(A) If \(\chi \in W_0 \Rightarrow \frac{1}{2} \chi \left(\frac{x}{2} \right) \in W_1 \subset V_0 \)

\[
\frac{1}{2} \chi \left(\frac{x}{2} \right) = \sum_{k \in \mathbb{Z}} \tilde{g}_k e^{-2\pi ikx} \quad \text{in } L^2(\mathbb{R}) \]

with \(\{ \tilde{g}_k : k \in \mathbb{Z} \} \in L^2(\mathbb{R}) \) and

\[
\tilde{g}_k = \langle \frac{1}{2} \chi \left(\frac{x}{2} \right), \psi \rangle = \int_{-\infty}^{\infty} \frac{1}{2} \chi \left(\frac{x}{2} \right) \psi (x-k) \, dx
\]

As in (3),

\[
(F \chi)(2x) = \left(\sum_{k \in \mathbb{Z}} \tilde{g}_k e^{-2\pi ik2x} \right) \chi (x) \Leftrightarrow \text{Q (5) } \quad \text{F} \chi (x) \Leftrightarrow \tilde{g}(x) \psi (x) \]

and \(\chi (x) \) is called the high-pass filter of the MRA.
(B) ** If \(\{ T_{k}: k \in \mathbb{Z} \} \) o.n. system in basis of \(W_{0} \),
\[
1g(0)1^{2} + 1g \left(\frac{1}{2} \right)1^{2} = 1 \quad \text{a.e. } 0 \in \mathbb{R} \quad (8)
\]

Same proof as the one in Prop 3.1.

(C) If \(W_{0} = \text{span} \{ T_{k}: k \in \mathbb{Z} \} \perp V_{0} = \text{span} \{ T_{k}: k \in \mathbb{Z} \} \), then
\[
\sum_{k \in \mathbb{Z}} F_{h}(x + k) g(x + k) = 0 \quad \text{a.e. } x \in \mathbb{R} \quad (9)
\]

P/ See page 3.4.9 of my notes

(D) If \(\{ T_{k}: k \in \mathbb{Z} \} \) o.n. basis of \(W_{0} \),
\[
g(0)h(0) + g \left(\frac{1}{2} \right)h \left(\frac{3}{2} \right) = 0 \quad \text{a.e. } 0 \in \mathbb{R} \quad (10)
\]

P/ See page 3.4.9 of my notes

Remark. If \(F_{h}(0) = 1 \Rightarrow h(0) = 1 \Rightarrow h \left(\frac{1}{2} \right) = 0 \Rightarrow \)
\[
g(0) = 0 \Rightarrow F_{h}(0) = 0 \Leftrightarrow \int_{0}^{\infty} h(x) dx = 0
\]

Prop 3.3 \(\{ T_{k}: k \in \mathbb{Z} \} \) o.n. basis of \(W_{0} \) \(\Leftrightarrow \) (8) \& (10)

Only \(\Rightarrow \) remains to be proved.
Thm. 3.3 (Mallat, 1989)

\((\psi, \psi^2) \text{ MRA for } L^2(\mathbb{R}) \text{ with low pass filter } h. \) Define

\[q(\xi) = \frac{e^{-2\pi i \xi} h(\xi + \frac{1}{2})}{\sqrt{2}} \psi(\xi) \quad (11) \]

for any 1-periodic function \(\psi \) with \(|\psi(\xi)| = 1 \text{ a.e. } \xi \in \mathbb{R}. \)

Then \(\psi \) is given by

\[\mathcal{F}_\psi(\omega) = q(\omega) \mathcal{F}_\psi(\omega) \quad \text{a.e. } \omega \in \mathbb{R}, \]

then \(\{ \psi_{k, \ell} \} = \{ \phi_{k, \ell} \} \) is an orthonormal basis of \(L^2(\mathbb{R}) \).

P. By Prop 3.2 & Estravity, enough to show (8) \& (10).

Since \(|h(\xi)|^2 \leq (h(\xi + \frac{1}{2}))^2 = 1 \text{ a.e. (Prop 3.1) } \), then

\[q(\xi) = \frac{1}{\sqrt{2}} \mathcal{F}_\psi(\xi) = \frac{1}{\sqrt{2}} \mathcal{F}_\psi(\xi) \left[1 + e^{-2\pi i \xi} \right] = 0, \]

Ex 3.3. If \(q(\xi) \) is given by (11) with \(\psi(\xi) = 1 \), show that \(q_{k, \ell} = \mathcal{F}_\psi(\xi - k \ell) \) \(\psi_{k, \ell} \text{ is a basis.} \)

\[\mathcal{F}_\psi(\omega) = q(\omega) \mathcal{F}_\psi(\omega) = \sum_{k \in \mathbb{Z}} q_{k, \ell} \psi_{k, \ell} e^{-2\pi i \omega \xi} \]
Ex 3.3
\[
\sum_{k \in \mathbb{Z}} \overline{h(1-k)} (-1)^{1-k} f(T_k \phi)(\xi) = \mathcal{F} \left(\sum_{k \in \mathbb{Z}} \overline{h(1-k)} (-1)^{1-k} T_k \phi \right)(\xi)
\]

\[
\mathcal{F} \left(\sum_{k \in \mathbb{Z}} (-1)^{1-k} h(1-k) \phi(x-k) \right)
\]

\[
\phi(x) = 2 \sum_{k=-\infty}^{\infty} (-1)^{1-k} h(1-k) \phi(2x-k)
\]

(12)

Ex 3.4. Use (12) and Ex 3.1 to show that Mallet's recipe for Haar-MRA with \(\phi(x) = \chi_{[0,1]}(x) \) gives
\[
\phi(x) = \chi_{[0,\frac{1}{2}]}(x) - \chi_{[\frac{1}{2},1]}(x)
\]

(\(\psi \))
3.5. Fast Wavelet Transform

\[V_0 \longrightarrow V_1 \longrightarrow \ldots \longrightarrow V_{j-2} \longrightarrow V_{j-1} \longrightarrow V_j \]

Since \(\{ \phi_{j,k} : k \in \mathbb{Z} \} \) is an orthonormal basis of \(V_j \):

\[p_{V_j} f = \sum_{k \in \mathbb{Z}} c_j(k) \phi_{j,k} \quad \text{with} \quad c_j(k) = \langle f, \phi_{j,k} \rangle \quad (13) \]

(Aproximation)

Since \(\{ \psi_{j,k} : k \in \mathbb{Z} \} \) is an orthonormal basis of \(W_j \):

\[p_{W_j} f = \sum_{k \in \mathbb{Z}} d_j(k) \psi_{j,k} \quad \text{with} \quad d_j(k) = \langle f, \psi_{j,k} \rangle \quad (14) \]

Since \(p_{V_j} f + p_{W_j} f = p_{V_{j+1}} f \) (14) give the details.

Objective: knowing \(c_{j+1}(k) \) and coefficients \(h_{j+1}(k) \) and \(g_{j+1}(k) \), find formulas for \(c_{j-1}(k) \) and \(d_{j-1}(k) \) - Decomposition algorithm -

Lemma 3.4. \(\Psi_{j-1,p} = \sqrt{2} \sum_{k \in \mathbb{Z}} h_{j-1}(k-2p) \phi_{j-1,k} \) \((\text{in} \ L^2(\mathbb{R})) \)

\[\Psi_{j-1,p} = \sum_{k \in \mathbb{Z}} h_{j-1} \phi_{j-1,k} \] \((\text{in} \ L^2(\mathbb{R})) \)

Proof: Recall

\[\frac{1}{2} \Phi_2(\frac{x}{2}) = \sum_{k \in \mathbb{Z}} h_{2k} \Phi_2(x - 2k), \quad \text{where} \quad \psi_{j-1,p} = \frac{1}{\sqrt{2}} \Phi_2(\frac{x}{2}), \quad \Phi_2(-k) \]

Since \(\Psi_{j-1,p} \in V_j \),

\[\Psi_{j-1,p} = \sum_{k \in \mathbb{Z}} \langle \Psi_{j-1,p}, \psi_{j,k} \rangle \psi_{j,k} \]

\[\langle \Psi_{j-1,p}, \psi_{j,k} \rangle = \int_{-\infty}^{\infty} \frac{1}{2} \Phi_2(z-x) 2 \psi_{j-1,p}(z-k) \] \(dz \)
\[y = 2^{j-2p} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2}} \varphi \left(\frac{y}{2^j} \right) \varphi \left(y + 2^p - k \right) \, dy \]

\[= \sqrt{2} < \frac{1}{2} \varphi \left(\frac{y}{2^j} \right), \varphi \left(y - (1 - 2p) \right) > = \sqrt{2} \sum_{k \in \mathbb{Z}} h_{[k-2p]} \mathcal{G}_j(k) \] (By *)

Now

\[\mathcal{G}_{j-1}(p) = \mathcal{G}_j(p) \]

\[= \sqrt{2} \sum_{k \in \mathbb{Z}} h_{[k-2p]} \mathcal{G}_j(k) = \sqrt{2} \sum_{k \in \mathbb{Z}} h_{[k-2p]} \mathcal{G}_j(k) \] (15)

which computes \(\mathcal{G}_{j-1}(p) \) in terms of \(\mathcal{G}_j(k) + h_{[k-2p]} \)

\[\mathcal{G}_{j-1}(p) \]

Ex 3.5 Imitate the proof of (15) to show

\[\mathcal{A}_{j-1}(p) = \sqrt{2} \sum_{k \in \mathbb{Z}} h_{[k-2p]} \mathcal{A}_j(k) \] (16)

with terms \(\mathcal{A}_j(k) \) in terms of \(\mathcal{A}_j(k) \) and \(h_{[k-2p]} \)

(15) \& (16) are called "decomposition algorithm"

Objective: knowing \(\mathcal{G}_j(k) \), \(\mathcal{A}_j(k) \) and the filters well, find a formula for \(\mathcal{G}_j(p) \) - reconstruction algorithm

Since \(\psi_j = \psi_{j-1} \oplus \psi_{j-1} \), the collection

\[\{ \psi_{j-1,k} : k \in \mathbb{Z}, j \in \mathbb{Z} \} \]

is an o.n. basis of \(\psi_j \). Since \(\psi_j, p \in \psi_j \),
\[Y_{j,p} = \sum_{k \in \mathbb{Z}} \langle \psi_{j,p}, \psi_{j,k} \rangle \psi_{j-1,k} + \sum_{k \in \mathbb{Z}} \langle \psi_{j,k}, \psi_{j-1,k} \rangle \psi_{j-1,k} \]

Hence,

\[C_j(p) = \langle \phi_j, \psi_{j,p} \rangle = \]

\[= \sqrt{2} \sum_{k \in \mathbb{Z}} h(p-2k) \psi_{j-1,k} \quad + \quad \sqrt{2} \sum_{k \in \mathbb{Z}} q(p-2k) \phi_{j-1,k} \] \((17) \)

(17) is the reconstruction algorithm

(15) and (16) are linear equations; they can be written in matrix form:

Let \(C_j = (c_j(k))_{k \in \mathbb{Z}} \) and \(D_j = (d_j(k))_{k \in \mathbb{Z}} \)

(15) \(\iff \) \(C_{j-1} = H C_j \); (16) \(\iff \) \(D_{j-1} = G C_{j-1} \)

where \(H \) is a double infinite matrix \(H = (h_{j-k-2p})_{p,k \in \mathbb{Z}} \)

Abusing notation

\[(15) \iff (16) \iff \begin{pmatrix} C_{j-1} \\ D_{j-1} \end{pmatrix} = \begin{pmatrix} H & | \\ G & | \end{pmatrix} \begin{pmatrix} C_j \\ 0 \end{pmatrix} \]
(14) is also linear: can be written in matrix form

\(C_j = \begin{pmatrix} H^T & G^T \end{pmatrix} \begin{pmatrix} C_{j-1} \\ D_{j-1} \end{pmatrix} \)

\[\text{Ex 3.6: Assume only } g_1(0), g_1(1), g_1(2), g_1(3) \text{ are non-zero and consider the Haar wavelet filters } h_{10}=\frac{1}{2}, h_{11}=\frac{1}{2} \text{ and } g_{10}=-\frac{1}{2}, g_{113}=\frac{1}{2}. \text{ Write equations (15), (16) and (17) in matrix form.} \]

\[\begin{pmatrix} C_{j-1}(0) \\ C_{j-1}(1) \end{pmatrix} = \sqrt{2} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} C_j(0) \\ C_j(1) \\ g_{11} \\ g_{13} \end{pmatrix} \]

\[H_{2\times 4} \]

\[\begin{pmatrix} d_{j-1}(0) \\ d_{j-1}(1) \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ 0 & 0 & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} C_j(0) \\ C_j(1) \\ g_{12} \\ g_{13} \end{pmatrix} \]

\[(12) \quad C_j(0) = \sqrt{2} \frac{1}{2} C_{j-1}(0) + \sqrt{2} \frac{1}{2} d_{j-1}(0); \quad C_j(1) = \sqrt{2} \frac{1}{2} C_{j-1}(1) + \sqrt{2} \frac{1}{2} d_{j-1}(1) \]

\[C_j(2) = \sqrt{2} \frac{1}{2} C_{j-1}(1) + \sqrt{2} \frac{1}{2} d_{j-1}(1); \quad C_j(3) = \sqrt{2} \frac{1}{2} C_{j-1}(2) + \sqrt{2} \frac{1}{2} d_{j-1}(1) \]
When sampling a signal we take $N = 2^J$ data.
Assume $(c_j(x))_{k=0}^{N-1}$ are the data of data of $C_J(x)$.
Do the decomposition algorithm J times to obtain
\[C_0(x) \quad \text{and} \quad c_j(x), \quad 0 \leq j < J, \quad 0 \leq k < 2^j \]
Descending (small) details, a compressed signal is obtained.

Assume C_J has only $N = 2^J$ non-zero elements, $C_J(x), \quad 0 \leq k < N$ and $h = (h_0, h_1, \ldots, h_k)$ has only
the first k well non-zero. The number of operations
to compute $C_{J-1}(p), \quad 0 \leq p < \frac{N}{2}$, in (see (15)) is $\approx 2k$.
To compute all of them, we need $\approx 2k \frac{N}{2} = kN$ operations.

To compute all $c_j(p), \quad 0 \leq p < \frac{N}{2}$, need $\approx kN$ operations.
To compute $C_{J-1}(p) \ast c_j(p)$, need $\approx 2kN$ operations.

Thus, after J steps, we have done \approx operations
\[2kN + 2k \frac{N}{2} + 2k \frac{N}{4} + \ldots + 2k \frac{N}{2^J} \leq 2kN \left(1 + \frac{1}{2} + \frac{1}{4} + \ldots \right) \leq 4kN \]

Thus, the wavelet decomposition is an algorithm factor
than FFT (this requires $CN \log_2 N$ operations).
4.1. Properties of wavelets

Important for compressing: to have \(\| f \|_2^2 = \langle f, \psi^m \rangle \) small. The number of zero moments of a wavelet \(\psi \) with compact support makes the details small.

Prop 4.1. \(\psi \) an o.n. wavelet in \(L^2(\mathbb{R}) \) with \(\text{supp } \psi \subset [-a, a] \) and
\[
\int_{\mathbb{R}} \psi(y) dy = \int_{\mathbb{R}} x \psi(x) dx = \ldots = \int_{\mathbb{R}} x^m \psi(x) dx = 0.
\]

If \(f \in C^0, \text{exp}, \text{in an open nbh of } \frac{k \xi}{2^j}, \frac{k + \eta}{2^j} \), then
\[
|\psi(y)| = K_{\xi, \eta} y_{1/2} \leq C_{\psi, \eta} y_{1/2} d y (y^{1/2})
\]

P/ See page 3.6.1 of my notes.

Prop 4.2. If \(\psi \) is an o.n. wavelet with \(\int_{\mathbb{R}} \psi(x) dx = \int_{\mathbb{R}} x \psi(x) dx = \ldots = \int_{\mathbb{R}} x^m \psi(x) dx = 0 \), then \(g(0) = 0 \) and \(h(\frac{1}{2}) = 0 \).

P/ \[
\frac{d F_x}{d s} (\xi) = \int_{\mathbb{R}} (\xi x) \psi(x) e^{-2\pi i s x} dx \Rightarrow \frac{d F_x}{d s} (0) = 0
\]
\(\Rightarrow \int_{\mathbb{R}} x \psi(x) dx = 0 \). From \(F_x (2s) = g(s) F_x (s) \Rightarrow \)

25/08/2016
\[\frac{d P_4}{ds} (2s) = g'(s) F_4(s) + g(s) \frac{d F_4}{ds} (s) \]

\((8 > 0) \Rightarrow 0 = g'(s) \cdot 1 + g(s) \cdot \frac{d F_4}{ds} (s) = g'(s) \cdot 1 + 0 \)

\(\therefore g'(s) = 0 \) (We are assuming \(F_4(s) \neq 1 \)).

From \(g(s) = e^{-\frac{2\pi i s}{2}} \),

\[g'(s) = -2\pi i e^{-\frac{2\pi i s}{2}} + e^{-\frac{2\pi i s}{2}} \cdot h'(s + \frac{1}{2}) \]

\((8 > 0) \Rightarrow 0 = g'(s) = -2\pi i e^{-\frac{2\pi i s}{2}} + e^{-\frac{2\pi i s}{2}} \cdot h'(s + \frac{1}{2}) = 0 + h'(\frac{s}{2}) \)

\(\therefore h'(\frac{s}{2}) = 0. \)

\[x \]

Remark: Iterating derivatives in the proof of Prop 4.2 it can be proved that if \(\int \chi^l \chi \omega dx = 0, \ l = 0, \ldots, p - 1 \), then \(h^{(p-1)}(\frac{1}{2}) = 0 \). This has the effect of making \(h(s) \) more flat at \(\frac{1}{2} \).

\[x \]

To be able to program exactly (15), (16) and (17) (wavelet decomposition and reconstruction) need \(h_{\mathbb{R}}[k] \) and also \(g_{\mathbb{R}}[k] \) to have only a finite number of non-zero terms. This are called \textbf{finite filters}. If \(h_{\mathbb{R}}[0], \ldots, h_{\mathbb{R}}[N - 1] \neq 0 \) and \(h_{\mathbb{R}}[k] = 0 \) for \(k < 0 \) and \(k > N \), we say that \(\text{supp } h_{\mathbb{R}} \subseteq [0, N] \). In this case \(h(s) = \sum_{k=0}^{N-1} h_{\mathbb{R}}[k] e^{-2\pi i k s} \).
Compact scaling functions \(\psi \) give rise to filters of finite length and compactly supported wavelet.

Prop 4.3. Suppose \(\text{supp} \ \psi \subset [0, N] \). Then

1. \(h_k(t) = \sum_{-N+1 \leq k \leq 2N-1} h_k \psi_{k} e^{-2\pi i k t} \) (finite filter of length \(N+1 \))

2. \(\text{supp} \ \psi \subset \left[-\frac{N+1}{2}, \frac{N+1}{2} \right] \) (translation compact support)

Proof.

We know \(h_k(t) = \frac{1}{2} \int_{-\infty}^{\infty} \psi(\frac{x}{2}) \overline{\psi(x-k)} \, dx \)

\(\text{supp} \ \psi(\frac{x}{2}) \subset [0, 2N] \) and \(\text{supp} \ \psi(x-k) \subset [k, k+N] \).

For the support to intersect: \(k+N \geq 0 \) and \(k \leq 2N \). Thus \(h_k(t) \neq 0 \) if \(-N < k < 2N \).

1. Recall \(\psi(x) = 2 \sum_{k=-\infty}^{\infty} (-1)^{k} \overline{h_k} \psi(2x-k) \)

\(h_k(t) \neq 0 \iff -N+1 \leq 1-k \leq 2N-1 \iff 2N+2 \leq k \leq N \)

\(\text{supp} \ \psi(2x-k) \subset \left[\frac{k}{2}, \frac{k+N}{2} \right] \).
\(\frac{k}{2} \leq x \leq \frac{k+N}{2} \)

Therefore, \(\text{supp} \ \psi \subset \left[-\frac{2N+2}{2}, \frac{2N+2}{2} \right] = \left[-N+1, N \right] \times \)
4.2. Properties of Filter Coefficients

Recall in matrix form the decomposition algorithm, with a little different notation. Start with a vector column \(x \) of size \(N = 2^q \), \(x = (x_0, x_1, \ldots, x_{N-1})^T \).

\[
\begin{pmatrix}
\tilde{a} \\
\tilde{d}
\end{pmatrix} = \frac{1}{\sqrt{2}}
\begin{pmatrix}
H_{N/2} \\
G_{N/2}
\end{pmatrix}
\begin{pmatrix}
x \\
\tilde{x}
\end{pmatrix}
\tag{1}
\]

Wavelet transform. Dcimp algorithm.

\(\tilde{a} \) = approximation (size=\(N/2 \)) ; \(\tilde{d} \) = details (size=\(N/2 \))

Reconstruction or inverse wavelet transform

\[
x = \sqrt{2}
\begin{pmatrix}
H_{N/2}^T \\
G_{N/2}^T
\end{pmatrix}
\begin{pmatrix}
\tilde{a} \\
\tilde{d}
\end{pmatrix}
\tag{2}
\]

The matrix \(H \) is formed with the low pass filter coefficients. \(G \) is formed with the high pass filter coefficients. If the scaling function \(\phi \) is known

\[
\phi(x) = \int_{-\infty}^{\infty} \frac{1}{2} \psi\left(\frac{x}{2}\right) \overline{\psi}\left(x-k\right) \, dx ; \quad \psi(x) = (2^{-1/2}) \phi(2^{-1}x)
\]

But it is not necessary (for finite filters) to know \(\phi \) up to be able to compute \(\tilde{d} \). It can be done using the properties of the transform. Function

\[
\phi(x) = \sum_{k \in \mathbb{Z}} h(k) \psi(2^{-1}x-k)
\]

\[
\tilde{d}(x) = \sum_{k \in \mathbb{Z}} h(k) \phi(2^{-1}x-k)
\]
Properties of \(h(f) \):

1. \(|h(f)|^2 + |h(f + \frac{1}{2})|^2 = 1 \) \hspace{1cm} (Prop 3.1)
2. \(h(0) = 1 \)
3. \(h\left(\frac{1}{2}\right) = 0 \)

These three properties are not independent. In fact, (3) follows from (1) \& (2) or (2) follows from (1) \& (3).

We shall use (1) \& (3).

\[(3) \iff \Theta = h\left(\frac{1}{2}\right) \iff \sum_{n=0}^{\infty}(-1)^k \overline{h[k]} e^{j\pi k} \quad (4) \]

\[(2) \iff \sum_{k=-\infty}^{\infty} h(k) = 1 \quad (5) \]

Prop 4.1 Property (1) for \(h(f) \) is equivalent to

\[\sum_{k \in \mathbb{Z}} |h[k]|^2 = \frac{1}{2} \quad \text{(ii)} \sum_{k \in \mathbb{Z}} h[k] \overline{h[k+2]} = 0 \quad \forall n \in \mathbb{Z}^*\]

\[\text{Proof:} \]

\[1 = h(f) \overline{h(f)} + h\left(\frac{1}{2}\right) \overline{h\left(\frac{1}{2}\right)} = \]

\[= \left(\sum_{k=-\infty}^{\infty} h[k] e^{-j2\pi kf} \right) \left(\sum_{k=-\infty}^{\infty} \overline{h[k]} e^{j2\pi kf} \right) + \]

\[+ \left(\sum_{k=-\infty}^{\infty} h[k+1] e^{-j2\pi k} \right) \left(\sum_{k=-\infty}^{\infty} \overline{h[k+1]} e^{j2\pi k} \right) \]

\[= \sum_{k=0}^{\infty} \sum_{l=-\infty}^{\infty} \left(h[k] \overline{h[l]} + (-1)^{k-l} h[k+1] \overline{h[l+1]} \right) e^{j2\pi(k-l)} \]

\[= \sum_{k=0}^{\infty} \sum_{l=-\infty}^{\infty} \left(\sum_{m=-\infty}^{\infty} 2 \delta[h-l] \overline{h[l+2m]} \right) e^{j2\pi(l-k)} \]

Result follows by the equality of coefficients. \(\Box \)
Ex. 4.4 Suppose \(h = [h_0, h_{11}] \) — only two non-zero coefficients, and is the low pass filter of an O.N. wavelet. Write the above equations for this case and show that

\[
\begin{align*}
 h_0 &= \frac{1}{2} = h_{11} \\
 g_{10} &= -\frac{1}{2}, \\
 g_{11} &= \frac{1}{2}
\end{align*}
\]

\[
\begin{align*}
 1 &+ h_0^2 = 1/2 \\
 h_0 + h_{11} &= 1 \\
 h_0 - h_{11} &= 0
\end{align*}
\]

\[
\begin{align*}
 g_{11} &= (-1)^{1-k} h_{1-k,1} \\
 g_{10} &= -\frac{1}{2}, \\
 g_{11} &= \frac{1}{2}
\end{align*}
\]

\[
\begin{align*}
 g_{11} &= (-1)^{1-k} h_{1-k,1} = \frac{1}{2}
\end{align*}
\]
4.3 Daubechies' Wavelet of Order 4

Has 4 non-zero welfs: \(h(3) = \bar{h}(0) + \bar{h}(1)e^{-2\pi i \frac{1}{4}} + \bar{h}(2)e^{-2\pi i \frac{2}{4}} + \bar{h}(3)e^{-2\pi i \frac{3}{4}}\). The conditions of section 4.1 give:

\[
\begin{align*}
(1) \quad & h(0) + \bar{h}(1) + \bar{h}(2) + \bar{h}(3) = 1 \\
(2) \quad & h(0) + \bar{h}(1) + \bar{h}(2) = 0 \\
(3) \quad & h(0)^2 + h(1)^2 + h(2)^2 + h(3)^2 = \frac{3}{2} \\
(4) \quad & h(0) + h(2) + h(3) = 0
\end{align*}
\]

Eq. (6) follows from (7), (8) and (9) because (1) \& (3) \Rightarrow (2). We have 3 equations and 4 unknowns. Try to solve it.

\[
\begin{align*}
(9) \quad & 1 \quad h_2, h_3 \perp h_0, h_1 \Rightarrow (h_2, h_3) = c \quad (-h_3, h_0) \\
& h_2 = -c \quad h_3, \quad h_3 = c \quad h_0 \quad (10) \quad c \neq 0
\end{align*}
\]

(8) \Rightarrow

\[
\begin{align*}
& h_0^2 + h_1^2 + c^2 h_1^2 + c^2 h_0^2 = \frac{3}{2} \\
& h_0^2 + h_1^2 = \frac{4}{2(1+c^2)} \quad \text{(11)}
\end{align*}
\]

\[
\text{Convergence of radius } \frac{1}{\sqrt{2(1+c^2)}}
\]

(7) \Rightarrow

\[
\begin{align*}
& h_0 - h_1 = c \quad h_1, -c \quad h_0 = 0 \\
& h_1 = \frac{1-c}{1+c} \quad h_0 \quad c \neq -1 \quad (12) \quad \text{straight line}
\end{align*}
\]

Infinitely many solutions
Daubechies impose an additional condition

\[h'(y) = 0 \quad \text{(filter selector at } y = \frac{1}{2}) \quad \text{(See Prop 4.2)} \]

\[h(y) = \sum_{k \in \mathbb{Z}} h_k e^{-2\pi i k y} \Rightarrow h'(y) = -2\pi i \sum_{k \in \mathbb{Z}} k h_k e^{-2\pi i k y} \]

\[\Rightarrow h'(\frac{1}{2}) = -2\pi i \sum_{k \in \mathbb{Z}} k h_k (-1)^k \]

(13) \[\sum_{k \in \mathbb{Z}} k h_k (-1)^k = 0 \]

For our filter \((h_0, h_1, h_2, h_3)\)

\[-h_1 + 2h_2 - 3h_3 = 0 \quad \text{(14)}\]

From (10), \[-h_1 - 2ch_1 - 3ch_0 = 0\]

\[h_1 = \frac{-3c}{1 + 2c} \quad \text{(15) } c = -\frac{1}{2}\]

strawhat line

To have solution, slopes of straight lines (13) and (15) must be equal

\[\frac{1-c}{1+c} = -\frac{3c}{1+2c} \Rightarrow c = -2 \pm \sqrt{3} \]

Take \[c = -2 + \sqrt{3} \]

(12) \[h_1 = \frac{1-c}{1+c} h_0 = \frac{3-\sqrt{3}}{2} h_0 = \frac{(3-\sqrt{3})(1+\sqrt{3})}{-1+\sqrt{3}} h_0 \]

\[= -\frac{2\sqrt{3}}{-2} h_0 = \sqrt{3} h_0 \quad \text{(16)} \]
\((11) \Rightarrow \quad 4 \ h_0^2 = \frac{4}{2(1+\varepsilon^2)} = \frac{1}{\varepsilon} \quad 1 + (-2\sqrt{3})^2 = \frac{2+\sqrt{3}}{8} \quad h_0^2 = \frac{2+\sqrt{3}}{8}\)

Before taking square roots, \((1+\sqrt{3})^2 = 4+2\sqrt{3} = 2(2+\sqrt{3})\).

Hence

\[h_0^2 = \frac{(1+\sqrt{3})^2}{64} \Rightarrow h_0 = \frac{1+\sqrt{3}}{8} \]

Take, for example \(h_0 = \frac{1+\sqrt{3}}{8} \). Then,

\[(10) \quad h_1 = \frac{1-\varepsilon}{1+\varepsilon} \cdot h_0 = \frac{\sqrt{3}}{8} \quad h_2 = -\varepsilon h_1 = \frac{3-\sqrt{3}}{8} \quad h_3 = \varepsilon h_2 = \frac{1-\sqrt{3}}{8}\]

Daubechis's filter of order 4:

\[
\begin{align*}
 h_0 &= \frac{1+\sqrt{3}}{8} \quad h_1 &= \frac{3+\sqrt{3}}{8} \quad h_2 &= \frac{3-\sqrt{3}}{8} \quad h_3 &= \frac{1-\sqrt{3}}{8} \\
\end{align*}
\]

Since \(g_{\ell} = (-1)^{\ell} h_{\ell}\)

\[
\begin{align*}
 g_0 &= -\frac{3+\sqrt{3}}{8} \quad g_1 &= \frac{1+\sqrt{3}}{8} \quad g_{-1} = \frac{3+\sqrt{3}}{8} \quad g_{-2} = -\frac{1-\sqrt{3}}{8} \\
\end{align*}
\]
4.4. IMAGE PROCESSING WITH WAVELETS

A grayscale digital image often be viewed as an $M \times N$ matrix whose elements are integer numbers between 0 and $255 = 2^8 - 1$ (0 = black, 255 = white).

The number indicates the gray intensity of the pixel.

(Show example in transp. 2.4 of Tekla UC3-M)

Let $X = (X_{ij})_{i=1, j=1}^{M, N}$ be a grayscale digital image. To process X with 0.n wavelets, apply wavelet transforms to the columns of X to obtain $N = 2^q, M = 2^q$

\[
\sqrt{2} \begin{bmatrix} H & G \\ G & -H \end{bmatrix} X \rightarrow \begin{bmatrix} \text{approx} \\ \text{details} \end{bmatrix}
\]

Apply now the wavelet transform to the rows of the new image to obtain

\[
\sqrt{2} \begin{bmatrix} H & G \\ G & -H \end{bmatrix} X \begin{bmatrix} H^T & G^T \\ G^T & -H^T \end{bmatrix} \rightarrow \begin{bmatrix} \text{A} \\ \text{V} \\ \text{H} \\ \text{G} \end{bmatrix}
\]

\[
= 2 \begin{bmatrix} H & G \\ G & -H \end{bmatrix} \begin{bmatrix} H^T & G^T \\ G^T & -H^T \end{bmatrix} = 2 \begin{bmatrix} H_X H_X^T & H_X G_X^T \\ G_X H_X^T & G_X G_X^T \end{bmatrix}
\]

\[
= \begin{bmatrix} A & V \\ H & G \end{bmatrix}
\]

(Show transparency S.1 of Notes, UC3M-Tekla)
Ex. 4.2 Compute the approximation and the details (horizontal, vertical, and diagonal) of the image

\[x = (x_{ij})_{i,j=0}^3, \quad a_{i=0} = 20 \text{ if } j=0,1,2; \quad a_{i=0} = 20 \text{ if } i=0,1,2 \]

and the rest of the coefficients zero, using a 2D-Haar transform. (Use grey values with Black=20, White=0, to have an image representation.)
LECTURE 5: THE JPEG FORMAT FOR IMAGES

Brief history of JPEG and JPEG2000 = JPEG2K

Use transparencies Section 9.4 - JPEG (Old Notes)

Step 1. The RGB system for colors

(255, 0, 0)	Red	(255, 255, 0)	Red and Green Yellow
(0, 255, 0)	Green	(0, 255, 255)	Green + Blue Cyan
(0, 0, 255)	Blue	(255, 0, 255)	Red and Blue Magenta
(0, 0, 0)	Black	(255, 255, 255)	White

3-D representation of RGB system

Step 2. Color space transformation

\[
\begin{align*}
Y &= 0.257 R + 0.504 G + 0.098 B \\
C_b &= -0.148 R - 0.291 G + 0.439 B \\
C_r &= 0.439 R - 0.368 G - 0.071 B
\end{align*}
\]

Other transformation may be applied

Step 3. Downsampling

Downsampling by 2 is done eliminating every second number in the components of the color space representation
4.1. 2D Discrete Cosine Transform in JPEG

Example of a grey scale representation of color of an 8x8 block of an image.

4.2. CDF-Biorthogonal wavelets (Cohen, Daubechis, Feauveau). Similar to 2D-orthogonal wavelet transform

\[X_{8 \times 8} \xrightarrow{\text{Transform}} \hat{X}_{8 \times 8} = (\hat{X}_{ij})_{i,j=1}^8 \]

Step 5. Quantization

\[
\begin{bmatrix}
16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\
12 & 12 & 14 & 19 & 26 & 58 & 66 & 74 \\
14 & 13 & 16 & 24 & 40 & 56 & 60 & 55 \\
13 & 18 & 24 & 70 & 56 & 62 & 62 & 45 \\
24 & 26 & 62 & 74 & 56 & 56 & 62 & 66 \\
49 & 92 & 101 & 84 & 74 & 66 & 72 & 65 \\
72 & 92 & 95 & 98 & 100 & 108 & 109 & 99
\end{bmatrix}
\]

\[= (Q_{ij})_{i,j=1}^8 \]

\[B = (b_{ij})_{i,j=1}^8, \quad b_{ij} = \left\lfloor \frac{\hat{X}_{ij}}{Q_{ij}} \right\rfloor \text{ (rounded)} \]

Show B for the play/toy example.

Step 6. Encoding

Arrange numbers in a zig-zag order.

Use Huffman encoding to compress; assign a code with fewer bits to symbols that appear more frequently. No information is lost in this step.
5.1. **Discrete Cosine Transform**

S_N^r = space of discrete signals of size N : $(f(n))_{n=0}^{N-1}$

In Thm 1.2 (lecture 1) we show:

$$\{ e^{i2\pi kn/N} \}_{k=0}^{N-1} = \left\{ \left(\frac{1}{N^n} \right)^{\frac{1}{i2\pi kn/N}} \right\}_{n=0}^{N-1} \quad (1)$$

is an o.n. basis of $S_N^r \cong \mathbb{C}^N$

(Section 2.2.4 of my notes)

$(f(n))_{n=1}^N$ is extended by symmetry with respect to $-\frac{1}{2}$ to obtain a signal of size $2N$ given by

$$\tilde{f}(n) = \begin{cases} f(n) & \text{if } 0 \leq n \leq N-1 \\ f(n-N) & \text{if } -N \leq n \leq -1 \end{cases}$$

In S_{2N}, the collection

$$\{ e^{i2\pi kn/2N} \}_{k=-N}^{N-1} = \left\{ \frac{1}{\sqrt{2N}} \left(e^{i\frac{2\pi kn}{2N}} \right) \right\}_{k=-N}^{N-1} \quad (2)$$

is an o.n. basis.

Ex 5.1: Show that S_{2N} (2) is an o.n. basis of $S_{2N} \cong \mathbb{C}^{2N}$ using the sum of an arithmetic prog.
Thus, any \(g \in \mathbb{F}_{2N} \), can be written as

\[
g(n) = \sum_{k=-N}^{N-1} a_k \alpha_k(n), \quad n = -N, \ldots, N-1
\]

Use \(e^{i\theta} = \cos \theta + i \sin \theta \) to show that each \(g \in \mathbb{F}_{2N} \) can be written as a linear combination of

\[
\left\{ \left(C_{2N}^{(2N)} \right)^{n-1}_{k=-N} = \left(\cos \frac{kn\pi}{N}(n+\frac{1}{2}) \right)^{n-1}_{k=-N} \right\}_{k=-N}^{N-1}
\]

\[
\cup \left\{ \left(S_{2N}^{(2N)} \right)^{n-1}_{k=-N} = \left(\sin \frac{kn\pi}{N}(n+\frac{1}{2}) \right)^{n-1}_{k=-N} \right\}_{k=-N}^{N-1}
\]

Collection (3) has \(4N \) elements, while \(\mathbb{F}_{2N} \) has \(2N \) elements. Thus, half of them have to be linear combinations of the other half:

\[
S_0^{(2N)} = (0) ; \quad C_0^{(2N)} = (1) ; \quad S_{-N}^{(2N)} = (-(-1)^n)_{n=-N}^{N-1} ; \quad C_N^{(2N)} = (0)
\]

If \(0 < k < N \)

\[
\left(C_{-k}^{(2N)} \right)^{n-1}_{n=-N} = \left(C_k^{(2N)} \right)^{n-1}_{n=-N}
\]

\[
\left(S_{-k}^{(2N)} \right)^{n-1}_{n=-N} = - \left(S_k^{(2N)} \right)^{n-1}_{n=-N}
\]

Thus, each element of \(\mathbb{F}_{2N} \) can be written as a linear combination of

\[
\left\{ \left(C_{2N}^{(2N)} \right)^{n-1}_{k=-N} = \left(\cos \frac{kn\pi}{N}(n+\frac{1}{2}) \right)^{n-1}_{k=-N} \right\}_{k=-N}^{N-1}
\]

\[
\cup \left\{ \left(S_{2N}^{(2N)} \right)^{n-1}_{k=-N} = \left(\sin \frac{kn\pi}{N}(n+\frac{1}{2}) \right)^{n-1}_{k=-N} \right\}_{k=-1}^{N-1}
\]
In terms of Eqn. (4), \(\tilde{f} \in S_{2N} \) as

\[
\tilde{f}(n) = \sum_{k=0}^{N-1} a_k \xi_k(n) + \sum_{k=1}^{N} b_k S_k(n), \quad -N \leq n \leq N-1
\]

The discrete signals \(S_k(n) \), \(n = -N, \ldots, N \), are antisymmetric w.r.t. \(-\frac{1}{2}\):

\[
S_k(-1-n) = \sin \frac{k\pi}{2N} (-1-n+\frac{1}{2}) = \sin \frac{k\pi}{2N} (-n + \frac{1}{2}) = -S_k(n)
\]

Thus, since \((\tilde{f}(n))_{n=-N}^{N-1} \) is symmetric w.r.t. \(-\frac{1}{2}\), we conclude \(b_k = 0, \quad k = 1, \ldots, N \).

Since \((f(n))_{n=0}^{N-1} = (\tilde{f}(n))_{n=0}^{N-1} \), any \(f \in S_N \) can be written as a linear combination of \(\{ C_k^{(2N)}(n) \}_{n=0}^{N-1} \), \(k = 0, 1, \ldots, N-1 \).

Thm 5.1 (DC -I basis)

The collection

\[
\{ \sqrt{\frac{2}{N}} (C_k^{(2N)}(n))_{n=0}^{N-1} \} = \{ \sqrt{\frac{2}{N}} (\cos \frac{k\pi}{N}(n+\frac{1}{2}))_{n=0}^{N-1} \}_{k=0}^{N-1}
\]

with \(f_k = \left\{ \begin{array}{ll} 1 & \text{if } k = 0 \\ \frac{1}{2} & \text{if } 1 \leq k \leq N-1 \end{array} \right. \) is an o.n. basis of \(S_N \).

Ex. 5.2 Show that

\[
\sum_{n=0}^{N-1} \omega_n (\frac{n}{N}(n+\frac{1}{2})) = 0, \quad k = 1, 2, \ldots, 2N-1 \quad (5)
\]

(Use the sum of a geom. progression, § 2.24 of Notes.)
\((5) \Rightarrow c^{(2m)}_0 \perp c^{(2m)}_k, \quad k = 0, 2, 4, \ldots, N - 1. \)

To show \(c^{(2m)}_0 \perp c^{(2m)}_k, \quad 1 \leq k \leq N - 1 \):

\[
\langle c^{(2m)}_k, c^{(2m)}_e \rangle = \sum_{n=0}^{N-1} \omega_n \frac{\sin \left(\frac{\pi}{N} n + \frac{\pi}{2} \right)}{N} \omega_n \frac{\sin \left(\frac{\pi}{N} n + \frac{\pi}{2} \right)}{N} = \frac{1}{2} \sum_{n=0}^{N-1} \omega_n \left(\frac{\sin \left(\frac{\pi}{N} n + \frac{\pi}{2} \right)}{N} + \omega_n \frac{\sin \left(\frac{\pi}{N} n + \frac{\pi}{2} \right)}{N} \right) = 0
\]

Now

\[
\| \sqrt{\frac{2}{N}} c^{(2m)}_0 \| \cdots \| = \sqrt{\frac{2}{N}} \sum_{n=0}^{N-1} 1 = 1
\]

\[
\| \sqrt{\frac{2}{N}} c^{(2m)}_k \| = \frac{1}{N} \sum_{n=0}^{N-1} \omega_n \frac{\sin \left(\frac{\pi}{N} n + \frac{\pi}{2} \right)}{N} = 1
\]

Using DCT-I basis (Thm 5.1), for any \(f \in F_N \):

\[
f(n) = \sqrt{\frac{2}{N}} \sum_{k=0}^{N-1} \hat{f}(k) \frac{\sin \left(\frac{\pi}{N} n + \frac{\pi}{2} \right)}{N}, \quad n = 0, 1, \ldots, N - 1
\]

where

\[
\hat{f}(k) = \langle f, \sqrt{\frac{2}{N}} c^{(2m)}_k \rangle = \frac{\sin \left(\frac{\pi}{N} n + \frac{\pi}{2} \right)}{N} \sum_{n=0}^{N-1} f(n) \omega_n \frac{\sin \left(\frac{\pi}{N} n + \frac{\pi}{2} \right)}{N}
\]

This is called DCT-I transform, and (5) to inverse DCT-I transform.
(6) and (7) can be written in matrix form to use in MATLAB

\[
\begin{pmatrix}
\hat{f}_0(0) \\
\hat{f}_1(1) \\
\vdots \\
\hat{f}_{N-1}(N-1)
\end{pmatrix} =
\begin{bmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \cdots & \frac{1}{\sqrt{2}} \\
\omega & \omega & \cdots & \omega \\
\vdots & \vdots & \ddots & \vdots \\
\omega^{N-1} & \omega^{N-2} & \cdots & \omega^{N-1}
\end{bmatrix}
\begin{pmatrix}
f(0) \\
f(1) \\
\vdots \\
f(N-1)
\end{pmatrix}
\]

\[C_I \]

(8) \leftrightarrow

\[
\begin{pmatrix}
f(0) \\
\vdots \\
f(N-1)
\end{pmatrix} = C_I^T \begin{pmatrix}
\hat{f}_0(0) \\
\vdots \\
\hat{f}_{N-1}(N-1)
\end{pmatrix}.
\]

Thus,

\[
(f(n))_{n=0}^{N-1} = C_I^T (\hat{f}_x(k)) = C_I^T C_I (f(n))_{n=0}^{N-1} \Rightarrow
\]

\[C_I^T C_I = I \] i.e., \(C_I \) is an orthogonal matrix

Remark. The number of operations required to compute DCT-I well be \(\approx 2N^2 \). As in the case of FT, there is a fast algorithm to allow to compute \(\hat{f}_I(k) \), \(k=0, \ldots, N-1 \), with \(\approx N \log_2 N \) operations.
5.2 2D - DISCRETE COSINE TRANSFORM: FOR IMAGES

For each 8 x 8 block of an image, the basis used is

\[
(\frac{3}{8} \omega \frac{k}{8} (n + \frac{1}{2}) \omega \frac{l}{8} (m + \frac{1}{2}))^T, \quad \text{with } 0 \leq k, l \leq N - 1
\]

and

\[
2^p = \begin{cases} \frac{3}{8} & \text{if } p = 0 \\ 0 & \text{if } 1 \leq p \leq N - 1 \end{cases}
\]

In matrix form, the DCT coefficients are computed with

\[
(\hat{f}_{ij}(k, l))^T = C_{ij} \left(f(n, m) \right)^T C_{ij}^T
\]

The first element of the matrix is

\[
\hat{f}_{ij}(0, 0) = \frac{1}{2} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} f(n, m) \quad \text{(mean value)}
\]

and is called the DC coefficient of the image. It is a large coefficient. In JPEG, 128 is subtracted from the values of each pixel \{0, ..., 255\} to obtain numbers between \{-128, ..., 127\}.
5.3 Biorthogonal Filters for JPEG2000

Daubechies proved that the only symmetric, finite length orthogonal filter is the Haar filter \(h = \left[\frac{1}{2}, \frac{1}{2} \right] \).

To find symmetric filters, Cohen–Daubechies–Feauveau relinquish orthogonality. They look for two finite low pass filters \(h(\xi) \) and \(\tilde{h}(\xi) \)

\[
\tilde{h}(\xi) \overline{h(\xi)} + \tilde{h}(\xi + \frac{1}{2}) \overline{h(\xi + \frac{1}{2})} = 1 \quad (8)
\]

\[
\tilde{h}(0) = 1, \quad h(0) = 1 \quad (9)
\]

\[
h(\frac{1}{2}) = 0, \quad \tilde{h}(\frac{1}{2}) = 0 \quad (10)
\]

Then define

\[
\tilde{g}(\xi) = e^{2\pi i \xi} \frac{\overline{h(\xi + \frac{1}{2})}}{h(\xi)} \quad (11)
\]

\[
g(\xi) = e^{2\pi i \xi} \frac{\overline{\tilde{h}(\xi + \frac{1}{2})}}{\tilde{h}(\xi)} \quad (12)
\]

are the high pass filters, to have

\[
\tilde{g}(\xi) \overline{\tilde{g}(\xi + \frac{1}{2})} + \tilde{g}(\xi + \frac{1}{2}) \overline{g(\xi + \frac{1}{2})} = 1
\]

\[
\tilde{g}(0) = 0, \quad g(0) = 0
\]

\[
\tilde{g}(\frac{1}{2}) = 1, \quad g(\frac{1}{2}) = 1
\]
Ex. 5.3 As in Ex. 3.3, deduce from (11), (12) that
\[
\hat{q}_k = (-1)^k \hat{h}_{-1-k} \quad \text{and} \quad \hat{q}_k = (-1)^k \hat{h}_{-1-k}
\]
where
\[
\hat{h}(\xi) = \sum_{k=-\infty}^{\infty} \hat{h}_k e^{2\pi i k \xi} \quad \hat{q}(\xi) = \sum_{k=-\infty}^{\infty} \hat{q}_k e^{2\pi i k \xi}
\]

Clearly,
\[
\hat{h}(\frac{1}{2}) = 0 \iff \sum_{k=-\infty}^{\infty} (-1)^k \hat{h}_k = 0 \quad (13)
\]
\[
\hat{h}(\frac{1}{2}) = 0 \iff \sum_{k=-\infty}^{\infty} (-1)^k \hat{h}_k = 0 \quad (14)
\]

and
\[
(8) \iff \sum_{k=-\infty}^{\infty} \hat{h}_k \hat{h}_{k-2n} = \frac{1}{2} \delta_{0,n} \quad n \in \mathbb{Z} \quad (15)
\]

The idea of CDF also to use a simple symmetric filter for \(\hat{h}(\xi) \); for example,
\[
\hat{h}(\xi) = \frac{1}{4} e^{2\pi i \xi} + \frac{1}{4} e^{2\pi i 2\xi} \quad \hat{h}_2 = [1, 2, 1]
\]

(\(= \frac{1}{2}(1 + \cos 2\pi \xi) \)) and find a filter \(h \) using (14) and (15).
For example, look for
\[h = (h_2, h_1, h_0, h_1, h_2) \]
of length 5 and symmetric. (14) and (15) give
\[
\begin{align*}
\begin{cases}
 h_0 - 2h_1 + 2h_2 = 0 \\
 h_0 + h_1 &= 1 \\
 h_1 + 2h_2 &= 0
\end{cases}
\end{align*}
\]
(n=2)

Solution: \[h_0 = \frac{3}{4}, \ h_1 = \frac{1}{4}, \ h_2 = -\frac{1}{8} \]

This is called a \textit{CDF(5, 3)} filter.

JPEG 2000 uses \textit{CDF(9, 7)} filter. The filter
\[\hat{h} \]
of length 7
\[\hat{h} = \frac{1}{2^5} (1, 6, 15, 20, 15, 6, 1) \]

(normalize) binomial coefficients \(\binom{6}{k} \frac{1}{2^6}, \ k = 0, \ldots, 6 \)
and find \[h = (h_4, h_3, h_2, h_1, h_0, h_1, h_2, h_3, h_4) \]
symmetric of length 9 using (14), (15).
Processing digital images \(X = (x_{i,j})^{M \times N} \), \(M = 2^q \), \(N = 2^l \) with biorthogonal wavelets is similar to the case of orthonormal wavelets. (See § 4.4.)

First apply the wavelet transform \(W_{1/2} = \sqrt{2} \left[\begin{array}{c} H_{1/2} \\ \dot{G}_{1/2} \end{array} \right] \)
to the columns of \(X \) to obtain

\[\sqrt{2} \left[\begin{array}{c} H_{1/2} \\ \dot{G}_{1/2} \end{array} \right] \times \]

Then apply the wavelet transform \(\tilde{W}_{1/2} = \sqrt{2} \left[\begin{array}{c} \tilde{H}_{1/2} \\ \tilde{G}_{1/2} \end{array} \right] \)

for the matrix to obtain

\[\sqrt{2} \left[\begin{array}{c} H_{1/2} \\ \dot{G}_{1/2} \end{array} \right] \times \left[\begin{array}{c} \tilde{H}_{1/2}^T \\ \tilde{G}_{1/2}^T \end{array} \right] \sqrt{2} = \left[\begin{array}{cc} A & \mathcal{I} \\ \mathcal{H} & \mathcal{G} \end{array} \right] \]

Compression is done by quantizing the coefficient (after a few iterations) and use encoding in an efficient way, such as Huffman encoding.

\[\left[\begin{array}{c} \mathcal{M} \\ \mathcal{G} \end{array} \right] \times \]
5.4. ENCODING (HUFFMAN)

Suppose that after applying DCT and Biorthogonal CDF(7,9) to an 8x8 block of an image we have obtained:

```
26  3  6  2  2  70  0  0
 0  2  4  1  1  0  0  0
 3  1  5  1  1  0  0  0
 4  1  2  1  0  0  0  0
 0  0  0  0  0  0  0  0
 0  0  0  0  0  0  0  0
 0  0  0  0  0  0  0  0
 0  0  0  0  0  0  0  0
```

Each number is modified with 1 byte = 8 bits

- $26 = 00011010_2$; $3 = 00000011_2$;
- $6 = 00000110_2$; $2 = 00000010_2$;
- $4 = 00000100_2$; $5 = 00000101_2$;
- $0 = 00000000_2$; $1 = 00000001_2$

The bit-stream save in the computer is:

0001101000000011000000000000001100000010 000001100000010

It do not necessary to separate bytes (words) since each one has 8 bits.
Hoffman found a way to modify a collection of "words" so that the bit per pixel (bpp) count is greatly reduced.

Step 1 Find the frequency of each binary digit

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00011010</td>
<td>1</td>
<td>$\frac{1}{64} = 0.015625 = p_0$</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>$\frac{2}{64} = 0.03125 = p_1$</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1</td>
<td>$\frac{4}{64} = 0.0625 = p_2$</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>$\frac{8}{64} = 0.125 = p_3$</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>2</td>
<td>$\frac{16}{64} = 0.25 = p_4$</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1</td>
<td>$\frac{32}{64} = 0.5 = p_5$</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>$\frac{64}{64} = 1 = p_6$</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>45</td>
<td>$\frac{45}{64} = 0.703125 = p_7$</td>
</tr>
</tbody>
</table>

Step 2 Order the relative frequencies in increasing order:

\[
(p_0 \leq p_2 \leq p_5 \leq p_1 \leq p_4 \leq p_3 \leq p_6 \leq p_7)
\]
Step 3 Coding

\[\begin{align*}
26 &= x_0 = \underline{11110} \\
3 &= x_1 = \underline{1000} \\
6 &= x_2 = \underline{11110} \\
2 &= x_3 = \underline{1110} \\
4 &= x_4 = \underline{1101} \\
5 &= x_5 = \underline{11110} \\
1 &= x_6 = 10 \\
0 &= x_7 = 0
\end{align*} \]

Coded bit stream

\[\begin{align*}
\underline{111110} & \underline{1100} \underline{1100} \underline{1110} \underline{1110} \underline{1100} \\
\underline{1110} & \underline{1100} \underline{1100} \underline{1110} \underline{1110} \underline{1100}
\end{align*} \]

BPP per pixel

<table>
<thead>
<tr>
<th>Digit</th>
<th>Frequency</th>
<th>Bits</th>
<th>Total Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>0</td>
<td>45</td>
<td>1</td>
<td>45</td>
</tr>
</tbody>
</table>

\[\text{bpp} = \frac{110}{64} = 1.719 \quad \text{(Much better than 8 bpp)} \]
Ex. 5.4 Consider the 4x4 image whose intensity matrix

\[
\begin{array}{cccc}
100 & 100 & 120 & 100 \\
100 & 50 & 50 & 40 \\
100 & 40 & 40 & 50 \\
120 & 120 & 100 & 100
\end{array}
\]

(a) Generate the Huffman code tree for this image.
(b) Write the bit stream for the image using the Huffman code (Zig-Zag)
(c) Compute the bpp of this bit stream.

Ex. 5.5 (Van Fleet, pg 95)

Given the Huffman code \(g = 10, \ 0 = 01, \ 0 = 00, \)
space key = 110, \(e = \text{1110}, \ i = \text{1111}, \)
draw the Huffman code tree and decode:

1000111011011010001110110110100001110

5/16

\[
\begin{array}{c}
0 = \text{00} \\
g = 10 \\
1 = \text{11} \\
e = \text{1110} \\
i = \text{1111}
\end{array}
\]

101111011101101100111011101110100001110

Going, going, gone
Ex 5.6. Given the Huffman code: D = 010, E = 10, H = 110, N = 011, T = 111, ___ = space, key = 00, draw the Huffman code tree and decode the bit stream sequence: 111110100010011010

THE END
THE END

T = 111
H = 110
E = 10
N = 011
D = 010
U = 00

111110100010011010

THE END
Ex 5.4.

100 - 7 \(-\frac{3}{6}\)
120 - 3 \(-\frac{3}{6}\)
50 - 3 \(-\frac{3}{6}\)
40 - 3 \(-\frac{3}{6}\)
\[
\frac{31}{16} \approx 2.6 \text{pp.}
\]

00001101001101111010111111

110000