The following proof of the irrationality of $\sqrt{2}$ is credited to Thomas Apostol. It relies on geometry and the principal of mathematical induction.

Suppose that there are natural numbers m and n such that $m^2 = 2n^2$ and that n is the smallest natural number for which $m^2 = 2n^2$. Draw a circle centered at A so that $AB = BC = n$ and $AC = m$.

Let DE be tangent to the circle at D and BC be tangent to the circle at B. Then $DE = EB = DC = m - n$. Then $\triangle DCE$ is a right triangle with sides $m - n < n$ and hypotenuse $n - (m - n) = 2n - m$ and n is not the smallest natural number satisfying $m^2 = 2n^2$.