Encoding Schemes and Finite Fields

Encoding and decoding. The most common encoding scheme is ASCII (American Standard Code for Information Interchange). It assigns a one-byte number (actually a 7-bit number in its original form) to each character and to some control characters.

Given a string of characters $c_n c_{n-1} \ldots c_1 c_0$ with ASCII codes $a_n a_{n-1} \ldots a_1 a_0$ the natural encoding is represent this string by the number $\sum_{i=0}^{n} 256^i a_i$.

In Python the function `ord(c)` gives the ASCII code of c and `chr(n)` reverses this map. Then the following function performs the natural encoding.

```python
# text to number
def encoding(text):
    result = 0
    for c in text:
        result = 256 * result + ord(c)
    return result
```

For instance $\text{ord('H')} = 72$ and $\text{ord('i')} = 105$. Then $\text{encoding('Hi')} = 18537 = 256 \cdot 72 + 105$. With more characters we obtain bigger numbers, for instance $\text{encoding('Hello')} = 310939249775$.

The inverse function consists of getting the digits in base 256. This can be done with some special functions (see below) but with our knowledge the natural approach is

```python
# number to text
def decoding(number):
    number = int(number)
    result = ''
    while number != 0:
        result = chr(number % 256) + result
        number //= 256
    return result
```

For instance with $\text{decoding(310939249775)}$ we recover 'Hello'.

Example: 78 556 652 729 377 means 'Great!' after decoding.

The direct approach is using the sentence `n.digits(b)` to obtain in Sage the list of digits of n in base b. The list starts from least significant digits. If you don't like this ordering, you can apply the `reverse` Python list method. For instance

```python
sage: 18537.digits(10)
[7, 3, 5, 8, 1]
sage: 18537.digits(256)
[105, 72]
sage: L = 18537.digits(10)
sage: L.reverse()
sage: L
[1, 8, 5, 3, 7]
```
Then our encoding function reduces to

```python
# number to text
def decoding(number):
    result = ''
    for i in number.digits(256):
        result = chr(i) + result
    return result
```

As we mentioned before it is unrealistic to assume that we can encode the message with a single number \(m \) when we are working modulo \(p \) because for a long message, \(p \) should have zillions of digits. The simplest and most common solution is to divide the message in blocks of fixed length.

```python
long_text = 'En un lugar de la Mancha de cuyo nombre no quiero...
for i in range(0, len(long_text), 2):
    print elgamal_encrypt(210904, 3, 2^19 - 1, encoding(long_text[i:i+2]))
```

The previous program allows to employ any prime \(p > 2^{56^2} \). In general, employing blocks of length \(k \) we need \(p > 2^{56^k} \). For \(p \) having 100 decimal digits \(k < 42 \).

Finite fields. If we wish to define a finite field \(\mathbb{F}_p^k \) as \(\mathbb{F}_p[x]/\langle M \rangle \) then we should to write in Sage

```python
F3pol.<X> = GF(3)[] # These are the polynomials \( \mathbb{F}_3[X] \)
F9.<X> = GF(3^2, modulus=X^2 + X + 2) # These are the classes
```

Of course the names `F3pol` and `F9` are not mandatory. Probably the following lines and their output give some hint about how it works.

```python
print 'F3pol =', F3pol
print 'F9 =', F9
print 'Elements of F9 :
for i in F9:
    print i,'
print 'There are',len(F9),'elements'
```

```
F3pol = Univariate Polynomial Ring in X over Finite Field of size 3
F9 = Finite Field in X of size 3^2
Elements of F9 : 0, 2*X, 2*X + 1, X + 1, 2, X, X + 2, 2*X + 2, 1
There are 9 elements
```

Note that \(X \) is in `F3pol` the variable of the polynomial but in the `F9` becomes an element of the field. Sometimes it is needed to avoid this clash of notation. If we want to name the second \(X \) as \(Y \) then we may define define
Anyway we prefer here to conserve the double meaning of X. Let us consider some The field \mathbb{F}_{3} $\!\!\!$. We can change the irreducible polynomial giving the modulus and even leave Sage to choose it internally. the method .modulus() allow to know it.

```
F3pol.<X> = GF(3)[]
F9.<X> = GF(3^2, name = 'Y', modulus=X^2 + X + 2 )
F9tilde.<Y> = GF(3^2, name = 'Y', modulus=X^2 + 1 )
print F9tilde
print F9
print F9bysage
```

```
Finite Field in Y of size 3^2
Finite Field in X of size 3^2
Finite Field in X of size 3^2
x^2 + 2*x + 2
```

Some computations in \mathbb{F}_{9}

```
F3pol.<X> = GF(3)[]
F9.<X> = GF(3^2, modulus=X^2 + X + 2 )
print '1) (X+1)^9 =', (X +1)^9
print '2) 1/X =', 1/X
print '3) (X +2)/( X ^100+ X +1) =', (X +2)/( X ^100+X+1)
```

The group of units of the finite field \mathbb{F}_{p^k} is obviously $\mathbb{F}_{p^k}^{\star}$ = $\mathbb{F}_{p^k} - \{0\}$, then it contains $p^k - 1$ elements. By Lagrange’s theorem

$$a^{p^k-1} = 1 \quad \forall a \in \mathbb{F}_{p^k}^{\star}.$$

For instance

```
F.<X> = GF(3)[]
F81.<X> = GF(3^4)
for i in F81:
    print i^80
```

prints a list of a zero and 80 ones.

To compute a generator in Sage use K.multiplicative_generator() where K is the field. In the previous example printF81.multiplicative_generator() gives X.

Encoding and decoding using finite fields. Note that X must be in \mathbb{F}_{p^k} with k greater than the maximum number of characters.
text to element of F_{p^k} ($p > 256$)

def encodingff(text):
 result = 0
 for c in text:
 result = X*result + ord(c)
 return result

Element of F_{p^k} ($p > 256$) to text

def decodingff(poly):
 result = ''
 for i in poly.polynomial().coeffs():
 result = chr(i) + result
 return result

For instance, working in $F_{257^{20}}$ we can manage strings of at most 20 characters.

F.<X> = GF(257)[]
K.<X> = GF(257^20)
print encodingff('Hi!')
print decodingff(72*X^2 + 105*X + 33)
print decodingff(encodingff('This text is too long '))
gives
72*X^2 + 105*X + 33
Hi!
and a bunch of strange symbols.

ElGamal cryptosystem works in the same way using finite fields

 def elgamal_decrypt(pri_key, g, p, (m1, m2)):
 return Mod(m2, p)*Mod(m1, p)**(-pri_key)

 def elgamal_encrypt(pub_key, g, p, message):
 k = floor(1+1000000*random())
 return (Mod(g, p)**k, message*Mod(pub_key**k, p))

ElGamal in finite fields
F.<X> = GF(257)[]
K.<X> = GF(257^20, modulus=X^20 +X+70)
g = X + 4
pri_key = 123456789
pub_key = g^pri_key
p = X^20 +X+70
message = encodingff('This is a message')

print elgamal_encrypt(pub_key, g, p, message)
print decodingff(elgamal_decrypt(pri_key, g, p, elgamal_encrypt(pub_key, g, p, message)))

If you find difficult to figure out an irreducible write K.<X>=GF(257^20) and extract the modulus with p=K(K.modulus()). The first K is to specify that you want an element of the field, not a polynomial.