Factorization algorithms

We consider the problem of getting a nontrivial factor of a composite number. Factorization algorithms appeal recursively to the solution of this problem and combined with primality tests give the full prime factorization of a number.

Fermat’s factorization. It is an extremely simple method essentially based on the relation \(x^2 - y^2 = (x - y)(x + y) \). If we can find \(y \) such that \(n + y^2 = x^2 \) then \((x - y)|n \).

The following program uses this technique to obtain a nontrivial factor. Some lines at the beginning are included to detect primes and even numbers.

```python
def fermat_factor(n):
    if Mod(n,2)==0:
        return 2
    if is_prime(n):
        return n
    y = 0
    while ( is_square(n+y^2)== False ):
        y += 1
    return sqrt(n+y^2) -y
```

If \(n = pq \) with \(p \) and \(q \) odd primes, as in RSA, then \(n = x^2 - y^2 \) with \(x = (p + q)/2 \), \(y = (p - q)/2 \). If \(p \) and \(q \) are very close then \(y \) is small and this simple method gives the factorization even for gigantic numbers.

For instance

```python
p = random_prime(10^101,True)
q = next_prime(p)
n = p*q
print 'The number is', n
print 'It has', n.ndigits(), 'digits'
print '\nA factor is ', fermat_factor(p*q)
```

can factor in no time a 200 digits number of this form. The moral of the story is that in RSA close prime numbers has to be avoided.

The number is
\[
659230925587256723667156710893739926206106725832901190192513650209261568\-92050760606517248939454031666073727849903970724380312985656681278595584\-288485116218855653949555427266986679356929385644799976733
\]
It has 202 digits

A factor is
\[
811930369913120520211362870245508687326172438342983987822130172511668081\-44382954024225441452897752819
\]
Pollard’s $p-1$ algorithm. It is not useful for all numbers but it allows to factorize some extremely large special numbers. It computes $P(B) = \gcd(a^{B!} - 1, n)$ for increasing values of B. Of course, if $1 < P(B) < n$ for some B, we have got a nontrivial factor. Actually $B!$ is a simplification of the original algorithm, a slightly better choice of the exponent is $\text{lcm}(1, 2, 3, \ldots, B)$.

We shall take initially $a = 2$.

The theory suggests that this is a good algorithm if there are prime factors p such that the prime factorization of $p-1$ only contains small prime powers. Here ‘good’ means that the value of B is reasonably small.

This function computes the values of $P(B)$ for $B < b$ and return a nontrivial factor if it finds it.

```python
def pollard_p(n, b):
    a = 2
    for i in range(1, b + 1):
        a = Mod(a, n)^i
        d = gcd(a - 1, n)
        if (d != 1) and (d != n):
            return d
```

Note that $a_B = a^{B!}$ is computed by the recurrence $a_B = (a_{B-1})^B$ and, of course, we work modulo n, otherwise the size of a_B would be unmanageable for a computer.

With `pollard_p(10403, 10)` we get the factor 101 and `None` if 10 is substituted by a smaller number.

A slight variation tries bigger and bigger values of B up to getting a nontrivial factor

```python
def pollard_p_auto(n):
    a = 2
    i = 0
    d = n
    if is_prime(n):
        return d
    while (d == 1) or (d == n):
        i += 1
        a = Mod(a, n)^i
        d = gcd(a - 1, n)
    return d
```

One has to be careful with this program because for instance `pollard_p_auto(65)` enters into an infinite loop because $2^{B!} = 2^{12k}$ for $B > 3$ and $2^{12} \equiv 1 \pmod{65}$.

We avoid this problem changing the basis and starting up if at some point $a^{B!}$ becomes 1 modulo n.
def pollard_p_auto2(n):
 aa = 2
 a = aa
 i = 0
 d = n
 if is_prime(n):
 return d
 while (d==1) or (d==n):
 i += 1
 a = Mod(a,n)^i
 d = gcd(a-1,n)
 if a == 1:
 aa += 1
 a = aa
 i = 0
 return d

It is interesting to check numerically the performance of the algorithm for \(n = pq \) in terms of the factorization of the \(p - 1 \) where \(p \) is the output of pollard_p_auto2(n). To this end we consider

\[k = 7 \]

for i in range(20):
 p = random_prime(10^k, True)
 q = random_prime(10^k, True)
 t = cputime()
 f = pollard_p_auto2(p*q)
 dt = cputime(t)
 print factor(f-1), ' Time:', dt

that prints the factorization of \(p - 1 \) and the interval of time \(dt \) required by pollard_p_auto2(n) to get \(p \).

\[\begin{align*}
2^2 \ast 3^2 \ast 139 \ast 347 & \quad \text{Time: 0.043994} \\
2^2 \ast 3 \ast 245261 & \quad \text{Time: 30.766322} \\
2^2 \ast 3^7 \ast 5 \ast 109 & \quad \text{Time: 0.014998} \\
2 \ast 17 \ast 19 \ast 8923 & \quad \text{Time: 1.134828} \\
2^4 \ast 3^2 \ast 23 \ast 1423 & \quad \text{Time: 0.173974} \\
2^4 \ast 5 \ast 157 \ast 503 & \quad \text{Time: 0.061991} \\
2^2 \ast 5 \ast 13 \ast 43 \ast 401 & \quad \text{Time: 0.049991} \\
2 \ast 7 \ast 11 \ast 4597 & \quad \text{Time: 0.555916} \\
2 \ast 3^2 \ast 31 \ast 4451 & \quad \text{Time: 0.563914} \\
2 \ast 3^2 \ast 13^2 \ast 19 \ast 79 & \quad \text{Time: 0.010998} \\
2 \ast 17^2 \ast 17159 & \quad \text{Time: 2.112679} \\
2^2 \ast 3 \ast 7 \ast 101149 & \quad \text{Time: 12.303129} \\
2^3 \ast 3^2 \ast 19 \ast 37 \ast 41 & \quad \text{Time: 0.00699899999995} \\
2^3 \ast 11 \ast 19 \ast 1993 & \quad \text{Time: 0.241964} \\
2 \ast 3 \ast 7 \ast 11 \ast 15199 & \quad \text{Time: 1.845719} \\
2 \ast 3^3 \ast 5 \ast 27743 & \quad \text{Time: 3.366488}
\end{align*} \]
Note that the biggest number in this list corresponds to $p - 1 = 2^2 \cdot 3 \cdot 245261$ having the unbalanced prime factor 245261. On the other hand, the best performance is for $p - 1 = 2 \cdot 3^2 \cdot 13^2 \cdot 19 \cdot 79$ with many small prime power factors.

Running the program with higher values of k (this is typically like one half of the number of digits) we realize that Pollard’s $p - 1$ algorithm is not convenient as a single method for general numbers.

For instance a table for $k=10$ included some extreme values like

\begin{verbatim}
2^2 * 5 * 17 * 27685279 Time: 3471.164302
2 * 347 * 6327889 Time: 793.400386
\end{verbatim}