Hill ciphers

Hill cipher and affine cipher are alike. Both of them employ a function \(f(x) = ax + b \) to encrypt. The difference is the dimension. Affine cipher are one-dimensional, take one character each time. Hill ciphers act on blocks of \(k \) characters. It forces to consider \(x = \vec{x} \) and \(b = \vec{b} \) with \(\vec{x} \) and \(\vec{b} \) two \(k \)-dimensional vectors and \(a = A \) a \(k \times k \) matrix.

In the following program we take
\[
A = \begin{pmatrix}
key_{11} & key_{12} \\
key_{21} & key_{22}
\end{pmatrix} = \begin{pmatrix} 9 & 5 \\ 7 & 4 \end{pmatrix} \quad \text{and} \quad \vec{b} = \begin{pmatrix} key_1 \\ key_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
\]

The blocks are of dimension 2. The variable \(\text{digraph} \) runs over the block of two consecutive characters.

```python
1  def encrypt_hill ( message , key11 , key12 , key21 , key22 , key1 , key2 ) :
2      alph = ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '  
3  
4      encrypted = ''
5      for i in range (0 , len ( message ) ,2):
6          digraph = message [i:i +2]
7          encrypted += alph [ Mod ( key11 * alph . find ( digraph [0])
8                  + key12 * alph . find ( digraph [1]) + key1 ,26)]
9          encrypted += alph [ Mod ( key21 * alph . find ( digraph [0])
10                  + key22 * alph . find ( digraph [1]) + key2 ,26)]
11      print message , '->', encrypted
```

Encrypting \(\text{WHATEVER} \)
encrypt using the matrix \([9, 5; 7, 4]\) and \(b=0 \)
encrypt_hill ('WHATEVER' , 9,5,7,4, 0,0)
we get \(\text{ZARYLIRS} \).

To decrypt this message we have to employ the inverse function \(A^{-1}(\vec{x} - \vec{b}) = A^{-1}\vec{x} - A^{-1}\vec{b} \). The inverse should be computed \pmod{26} \. In this case it does not matter because \(A^{-1} \) is an integral matrix.

\[
A^{-1} = \begin{pmatrix} 9 & 5 \\ 7 & 4 \end{pmatrix}^{-1} = \begin{pmatrix} 4 & -5 \\ -7 & 9 \end{pmatrix} \quad \text{and} \quad A^{-1}\vec{b} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.
\]

Consequently

decrypt using its inverse \([4, -5; -7, 9]\) and \(b=0 \)
encrypt_hill ('ZARYLIRS', 4,-5,-7,9, 0,0)
gives \(\text{WHATEVER} \).

Let us practice with a non-zero vector \(\vec{b} \) take for instance
\[
A = \begin{pmatrix}
key_{11} & key_{12} \\
key_{21} & key_{22}
\end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 7 & 2 \end{pmatrix} \quad \text{and} \quad \vec{b} = \begin{pmatrix} key_1 \\ key_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.
\]
encrypt using the matrix \(A=[3, 5; 7, 2] \) and \(b=[1,1] \)

\[
\text{encrypt_hill('SECRET', 3,5,7,2, 1,1)}
\]

We obtain XFOXEP.

To decrypt we have to compute

\[
A^{-1} = \begin{pmatrix} 3 & 5 \\ 7 & 2 \end{pmatrix}^{-1} = -\frac{1}{29} \begin{pmatrix} 2 & -5 \\ -7 & 3 \end{pmatrix} \equiv \begin{pmatrix} 8 & 19 \\ 11 & 25 \end{pmatrix} \quad \text{and} \quad A^{-1}b \equiv \begin{pmatrix} 25 \\ 16 \end{pmatrix}.
\]

Then we recover SECRET with

\[
\text{decrypt using } A^{-1}=[8, 19; 11, 25] \text{ and } -A^{-1}b=[25,16] \quad (26)
\]

\[
\text{encrypt_hill('XFOXEP', 8,19,11,25, 25,16)}
\]