Lenstra’s elliptic curve factorization algorithm

Repeated duplication method. To compute \(nP\) the obvious method is to apply \(n\) times the group law, i.e. \(nP = P + n \times P\)

```python
def easy_mult(n, P):
    result = 'O'
    for i in range(n):
        result = g_l(P, result)
    return result
```

But this is useless when \(n\) is very large, say hundred of digits.

The following program applies the analog of the repeated squaring algorithm in \(\mathbb{F}_p\). It is actually the same algorithm changing the multiplicative notation by the additive notation.

```python
def mult_2(n, P):
    result = 'O'
    pow_2P = P
    while n != 0:
        if n % 2 == 1:
            result = g_l(pow_2P, result)
        n //= 2
        pow_2P = g_l(pow_2P, pow_2P)
    return result
```

Comparing both algorithm one have to reject the first one even for not very high values of \(n\)

```python
E = EllipticCurve(GF(1000000007),[-6,5])
P = E([2,1])
a = Mod(-6,5)
b = Mod(5,5)
P=[2,1]
time easy_mult(10^6, P)
time mult_2(10^6, P)
gives

Time: CPU 8.97 s, Wall: 9.25 s
Time: CPU 0.00 s, Wall: 0.00 s
```

Factorization. In principle it is not possible to define an elliptic curve over a ring if we can save the group law. In fact the following line in Sage

```python
E = EllipticCurve(GF(10403),[-6,5])
```

(note that 10403 is not prime) raises the error
Let us see in an example what happens when we apply our function to add points in the ring \(\mathbb{Z}/10403\mathbb{Z} \).

Example:

```python
# Example P=(0,1) y^2= x^3+x+1, n = 10403
#

P= [0,1]
 a= Mod(1, 10403)
print mult_2( factorial(7), P )

def mult_2(n,P):
    result = 'O'
    pow_2P = P
    while n!=0:
        if (n%2)==1:
            result = g_l( pow_2P , result )
        n //=2
        pow_2P = g_l( pow_2P , pow_2P )
    return result

def g_l ( P, Q ):
    if P == 'O':
        return Q
    if Q == 'O':
        return P
    if (P [0] == Q [0]) and (P [1] == -Q [1]):
        return 'O',
    if (P [0] == Q [0]) and (P [1] == Q [1]):
        m = (3*P [0]^2+a)/2/P [1]
    else:
        m = (Q [1]-P [1])/(Q [0]-P [0])
        x3 = m^2-P [0]-Q [0]
    return [x3,m*(P [0]-x3)-P [1]]

print P,Q
```

Introducing at the beginning of the definition of the function the sentence

```python
print P,Q
```

we learn that the error appears when adding

\[[9696, 506] [7878, 10200] \]

The reason is that when computing the slope \(m \) we have to invert \(Q[0]-P[0] = -1818 \) and this is not possible because 1818 and \(n = 10403 \) are not coprime.
Lenstra elliptic curve factorization It is the analog of Pollard’s $p-1$ method. It consists in computing $1!P, 2!P, \ldots, B!P$ in an elliptic curve $E \pmod{n}$. If an error arises in the group law then it can be employed to get a factor of n. The power of the method is based on the fact that if the the factor is trivial or no error appear one can easily change the elliptic curve. In some sense is like a Pollard’s $p-1$ method with varying abelian gropus.

Firstly we have to hack the group law to detect the cases in which the group law is not well-defined. We employ the following notation for the points on E. The last case is the output corresponding to an error in the group law.

```
# "Normal" points [x,y,1]
# Point at infinity [0,1,0]
# Fake points [0,0,d] with d not coprime to the modulus.
#
```

The modified group law function is:

```
def g_l_l(P, Q, a):
    if P[2] != 1:
        if P[1]==1:
            return Q
        return P
    if Q[2] != 1:
        if Q[1]==1:
            return P
        return Q
    if (P[0] == Q[0]) and (P[1] == -Q[1]):
        return [0,1,0]
    if (P[0] == Q[0]) and (P[1] == Q[1]):
        if P[1].is_unit()==False:
            return [0,0,P[1]]
        m = (3*P[0]^2+ a )/2/ P[1]
        else:
            if (Q[0]-P[0]).is_unit()==False:
                return [0,0,Q[0]-P[0]]
            m = (Q[1]-P[1])/( Q[0]-P[0])
    x3 = m^2 -P[0] -Q[0]
    return [x3,m*(P[0]-x3)-P[1],1]
```

and the modified multiplication function is:
Same multiplication routine
changing O and g₁ by g₁l₁

def mult_2_l(n,P,a):
 result = [0, 1, 0]
 pow_2P = P
 while n!=0:
 if (n%2)==1:
 result = g_l_l(pow_2P , result , a)
 n //=2
 pow_2P = g_l_l(pow_2P , pow_2P , a)
 return result

For instance, the result of

g_l_l([9696, 506, 1], [7878, 10200, 1], 1)

is now
[0, 0, -1818]

We integrate this functions in Lenstra’s algorithm. We use \(y^2 = x^3 + ax + 1 \) as varying elliptic curve, because for any value of \(a \) the point \(P = (0, 1) \) (that we take as starting point) is on it.

Lenstra’s algorithm

def lenstra(n, bound_a, bound_b):
 if is_prime(n):
 print n, 'is prime'
 return n
 if n %2==0:
 return 2
 if n %3==0:
 return 3
 for a in range(bound_a):
 # Consider only elliptic curves
 if Mod (4* a^3+27 , n)==0:
 continue
 f_point = [Mod (0, n), Mod (1, n) ,1]
 for b in range(bound_b):
 # compute factorial
 f_point = mult_2_l(b+1 , f_point ,a)
 if f_point[2]==0:
 break
 if f_point[2]>1:
 print a, b
 return gcd(f_point[2], n)
 print 'Increase the values of bound_a and bound_b'
The parameters bound_a and bound_b in the function lenstra give the upper bound for
a, the number of elliptic curves, and B, the number of multiplications \(n!P \). Of course the
algorithm is stronger but slower taking large values of bound_a and bound_b.

For example

```python
# there are twenty-one 3's in the first example
time print lenstra(1333333333333333333333,200,100)
time print lenstra( (10^8+7)*(9*10^8+11) ,200,100)
time print lenstra( 10^20+699,200,100)
time print lenstra( 10^30+427 ,1000)
```

In a standard computer the results have been

- 43 78 -> 4363363
 - Time: CPU 1.02 s, Wall: 1.04 s
- 74 30 -> 900000011
 - Time: CPU 1.63 s, Wall: 1.66 s
- 156 20 -> 32935987639
 - Time: CPU 3.70 s, Wall: 3.74 s
- 223 756 -> 852759062050499
 - Time: CPU 89.23 s, Wall: 90.27 s

The algorithm has its limitations,

```python
time print lenstra( next_prime(10^18)*next_prime(10^19),300,3000)
```

produces

Increase the values of bound_a and bound_b
None
Time: CPU 421.03 s, Wall: 423.92 s

Appendix. It is possible to program Lenstra’s algorithm using only Sage functions but it
requires some deeper knowledge of Python and Sage. Essentially one cheats Sage forcing it
to consider \(\mathbb{Z}/n\mathbb{Z} \) as a field and one employs the exception handling in Python to redirect the
flow after an error.

The following program was written by Professor W. Stein, the lead developer of Sage, and

Note that it introduces a twist with respect to our previous program, now the elliptic curve
is chose at random.
def ecm(N, B=10^3, trials=10):
 m = prod([p^int(math.log(B)/math.log(p))
 for p in prime_range(B+1)])
 R = Integers(N)
 # Make Sage think that R is a field:
 R.is_field = lambda : True
 for _ in range(trials):
 while True:
 a = R.random_element()
 if gcd(4*a.lift()^3 + 27, N) == 1: break
 try:
 m * EllipticCurve([a, 1])([0,1])
 except ZeroDivisionError, msg:
 # msg: "Inverse of <int> does not exist"
 return gcd(Integer(str(msg).split()[2]), N)
 return 1

Now

time print ecm(133333333333333333333, 200, 100)
time print ecm(10^8+7)*(9*10^8+11), 200, 100)
time print ecm(10^20+699, 200, 100)
time print ecm(10^30+427, 300, 1000)

gives

4363363
Time: CPU 0.79 s, Wall: 0.89 s
100000007
Time: CPU 0.90 s, Wall: 1.00 s
3036192541
Time: CPU 0.96 s, Wall: 1.06 s
1
Time: CPU 47.94 s, Wall: 49.03 s

The random choice of the elliptic curve can give different results when running the program several times.