1. Orbits of A

2. Preservación del volumen en campos conservativos (dimensión 1). Las partículas con más momento se desplazan más.

3. Orbits del punto 0 por $T_{\sqrt{17}}$.

4. $\mathbb{Z} \setminus \mathbb{Q}$ y $\mathbb{Z}^2 \setminus \mathbb{R}^2$.
Teorema ergódico

densidad de \(m \sqrt{7} \).

Puntos de coordenadas enteras en la corona.

\(\text{PSL}_2(\mathbb{R}) \)
$\mu(gu) = \mu(u)$

$d(gx,gy) = d(x,y)$

10.

distancia t

$(z,0)$

$(z,0) u_t$

flujo horocíclico

11.

distancia t

$(z,0)$

$(z,0) a e^t$

flujo geodésico

12.

distancia t

$(z,0)$

(z,π)

flujo horocíclico exterior
Los flujos generan $PSL_2(\mathbb{R})$.

$g=(z,0)$

$(0,1)=g \cdot (z,1)$

$\equiv \mathbb{Z}^2 \setminus \mathbb{R}^2$

$(4 \mathbb{Z} \times 2 \mathbb{Z}) \setminus \mathbb{R}^2 \equiv \bigcirc$

Tesselaciones de \mathbb{R}^2
The geodesic flow expands the closed horocycles, pushing them away from the cusp; indeed, we have

$$g_t(H_y) = H_{e^{-t}y}.$$

Figure 3. A long closed horocycle H_y passes randomly through many fundamental domains for $SL_2(\mathbb{Z})$.

Random elliptic curves

Using mixing of the geodesic flow, it is not hard to show that H_y is uniformly distributed on $B = T_1(\mathfrak{M}_1)$ as $y \to 0$ (see, e.g., [EM, §7]). That is, uniform measure along H_y converges to the invariant measure μ_B on B as the length of H_y tends to infinity. See Figure 3.

Because of this uniform distribution, one can construct a “nearly random” Riemann surface X of genus one as follows: Pick $y > 0$ very small, pick $x \in [0, 1]$ at random, let $\tau = x + iy$, and set $X = \mathbb{C}/\mathbb{Z} \oplus \mathbb{Z}\tau$. As $y \to 0$, the distribution of X on \mathfrak{M}_1 converges to hyperbolic area measure.

E as a torus bundle

We now return to the space of lattice translates

$$E = \overline{ASL_2(\mathbb{R})/ASL_2(\mathbb{Z})}.$$

The projection $ASL_2(\mathbb{R}) \to SL_2(\mathbb{R})$ (sending $Ax + b$ to A) makes the space of lattice translates into a torus bundle

$$E \xrightarrow{D} B.$$
GAPS IN $\sqrt{n} \bmod 1$ AND ERGODIC THEORY

The geodesic flow expands the closed horocycles, pushing them away from the cusp; indeed, we have

$$g_t(H_y) = H_y$$

Figure 3. A long closed horocycle H_y passes randomly through many fundamental domains for $SL_2(\mathbb{Z})$.

Random elliptic curves

Using mixing of the geodesic flow, it is not hard to show that H_y is uniformly distributed on $B = T_1(\mathcal{M}_1)$ as $y \to 0$ (see, e.g., [EM, §7]). That is, uniform measure along H_y converges to the invariant measure μ_E on B as the length of H_y tends to infinity. See Figure 3.

Because of this uniform distribution, one can construct a "nearly random" Riemann surface X of genus one as follows: Pick $y > 0$ very small, pick $x \in [0, 1]$ at random, let $\tau = x + iy$, and set $X = \mathbb{C}/\mathbb{Z} \oplus \mathbb{Z}\tau$. As $y \to 0$, the distribution of X on \mathcal{M}_1 converges to hyperbolic area measure.

E as a torus bundle

We now return to the space of lattice translates

$$E = \text{ASL}_2(\mathbb{R})/\text{ASL}_2(\mathbb{Z})$$

The projection $\text{ASL}_2(\mathbb{R}) \to \text{SL}_2(\mathbb{R})$ (sending $Ax + b$ to A) makes the space of lattice translates into a torus bundle

$$E \xrightarrow{D} B.$$
The geodesic flow expands the closed horocycles, pushing them away from the cusp; indeed, we have

$$x_t(H_y) = H_{e^{i
u}y}.$$

Figure 3. A long closed horocycle H_y passes randomly through many fundamental domains for $SL_2(\mathbb{Z})$.

Random elliptic curves

Using mixing of the geodesic flow, it is not hard to show that H_y is uniformly distributed on $B = T_1(H_1)$ as $y \to 0$ (see, e.g., [EM, §7]). That is, uniform measure along H_y converges to the invariant measure μ_B on B as the length of H_y tends to infinity. See Figure 3.

Because of this uniform distribution, one can construct a “nearly random” Riemann surface X of genus one as follows: Pick $y > 0$ very small, pick $x \in [0, 1]$ at random, let $r = x + iy$, and set $X = \mathbb{C}/\mathbb{Z} \oplus \mathbb{Z}r$. As $y \to 0$, the distribution of X on \mathcal{M}_1 converges to hyperbolic area measure.

E as a torus bundle

We now return to the space of lattice translates

$$E = ASL_2(\mathbb{R})/ASL_2(\mathbb{Z}).$$

The projection $ASL_2(\mathbb{R}) \to SL_2(\mathbb{R})$ (sending $Ax + b$ to A) makes the space of lattice translates into a torus bundle

$$E \xrightarrow{D} B.$$
The geodesic flow expands the closed horocycles, pushing them away from the cusp; indeed, we have
\[g_s(H_y) = e^{-s} H_y. \]

Equidistribución de \(x_0, T x_0, T^2 x_0, \ldots, T^{N-1} x_0 \) en \(X \).

Figure 3. A long closed horocycle \(H_y \) passes randomly through many fundamental domains for \(\text{SL}_2(\mathbb{Z}) \).

Random elliptic curves

Using mixing of the geodesic flow, it is not hard to show that \(H_y \) is uniformly distributed on \(B = T_1(M_1) \) as \(y \to 0 \) (see, e.g., [EM, §7]). That is, uniform measure along \(H_y \) converges to the invariant measure \(\mu_B \) on \(B \) as the length of \(H_y \) tends to infinity. See Figure 3.

Because of this uniform distribution, one can construct a “nearly random” Riemann surface \(X \) of genus one as follows: Pick \(y > 0 \) very small, pick \(x \in [0, 1] \) at random, let \(\tau = x + iy \), and set \(X = \mathbb{C}/\mathbb{Z} + \mathbb{Z} \tau \). As \(y \to 0 \), the distribution of \(X \) on \(M_1 \) converges to hyperbolic area measure.

E as a torus bundle

We now return to the space of lattice translates
\[E = \text{ASL}_2(\mathbb{R}) / \text{ASL}_2(\mathbb{Z}). \]

The projection \(\text{ASL}_2(\mathbb{R}) \to \text{SL}_2(\mathbb{R}) \) (sending \(Ax + b \) to \(A \)) makes the space of lattice translates into a torus bundle
\[E \xrightarrow{D} B. \]
19 \quad t \quad 0 < t < 1

Porque el flujo horocíclico \(T_t \) avanza un poco más al estar más arriba.

extension de invariancia de \(g \)
\[u_t \rightarrow u \]

20

extension de invariancia de \(g \)
\[u_t \rightarrow u \]

\[x_k y \]
El flujo horacídico se pare puntos (con ángulo similar) muy eles pacio
The geodesic flow expands the closed horocycles, pushing them away from the cusp; indeed, we have

$$g_y(H_y) = H_{e^{-y}}.$$

Figure 3. A long closed horocycle H_y passes randomly through many fundamental domains for $\text{SL}_2(\mathbb{Z})$.

Random elliptic curves

Using mixing of the geodesic flow, it is not hard to show that H_y is uniformly distributed on $B = T(\mathcal{H}_1)$ as $y \to 0$ (see, e.g., [EM, §7]). That is, uniform measure along H_y converges to the invariant measure μ_B on B as the length of H_y tends to infinity. See Figure 3.

Because of this uniform distribution, one can construct a "nearly random" Riemann surface X of genus one as follows: Pick $y > 0$ very small, pick $x \in [0, 1]$ at random, let $r = x + iy$, and set $X = \mathbb{C}/\mathbb{Z} \oplus \mathbb{Z}r$. As $y \to 0$, the distribution of X on \mathcal{H}_1 converges to hyperbolic area measure.

E as a torus bundle

We now return to the space of lattice translates

$$E = \text{ASL}_2(\mathbb{R})/\text{ASL}_2(\mathbb{Z}).$$

The projection $\text{ASL}_2(\mathbb{R}) \to \text{SL}_2(\mathbb{R})$ (sending $Ax + b$ to A) makes the space of lattice translates into a torus bundle

$$E \xrightarrow{D} B.$$
The geodesic flow expands the closed horocycles, pushing them away from the cusp; indeed, we have

$$g_t(H_y) = H_{e^{t} y}.$$

Figure 3. A long closed horocycle H_y passes randomly through many fundamental domains for $\text{SL}_2(\mathbb{Z})$.

Random elliptic curves
Using mixing of the geodesic flow, it is not hard to show that H_y is uniformly distributed on $B = T_1(\mathcal{H}_1)$ as $y \to 0$ (see, e.g., [EM, §7]). That is, uniform measure along H_y converges to the invariant measure μ_B on B as the length of H_y tends to infinity. See Figure 3.

Because of this uniform distribution, one can construct a "nearly random" Riemann surface X of genus one as follows: Pick $y > 0$ very small, pick $\tau \in [0, 1]$ at random, let $\tau = x + iy$, and set $X = \mathbb{C}/\mathbb{Z} \oplus \mathbb{Z}\tau$. As $y \to 0$, the distribution of X on \mathcal{H}_1 converges to hyperbolic area measure.

E as a torus bundle
We now return to the space of lattice translates

$$E = \text{ASL}_2(\mathbb{R}) / \text{ASL}_2(\mathbb{Z}).$$

The projection $\text{ASL}_2(\mathbb{R}) \to \text{SL}_2(\mathbb{R})$ (sending $Ax + b$ to A) makes the space of lattice translates into a torus bundle

$$E \xrightarrow{D} B.$$