The goal of this article is to show that for any genus $g \geq 4$, the mapping class group Mod_g, contains a surface group; that is, a subgroup isomorphic to the fundamental group of a compact orientable surface.

The paper is organized as follows:
In §1 we set the relevant definitions and notation.

In §2 we define a continuous mapping $\phi : S \to M_{2,r}^{\text{pure}}$ from the surface of genus two S, to the moduli space of Riemann surfaces of genus two with r (ordered) distinguished points $M_{2,r}^{\text{pure}}$.

In §3 we prove that the group homomorphism $\phi_* : \pi_1(S) \to \pi_1(M_{2,r}^{\text{pure}})$ induced by the map ϕ, is injective, thereby providing a surface group inside the fundamental group of $M_{2,r}^{\text{pure}}$ which, in a natural way, can be identified to a certain subgroup of the mapping class group of the surface S with r punctures (or distinguished points), $Mod_{2,r}$. It turns out that this subgroup $\phi_*(\pi_1(S))$ is generated by a special kind of mapping classes introduced by Birman ([Bir]) called "spin".

Finally in §4, by lifting the mapping classes of S lying on a suitable finite index subgroup of $\phi_*(\pi_1(S))$, to mapping classes of a surface \tilde{S} of genus g, which is a double cover of S ramified over r values (the distinguished points of S), we will be able to get the desired surface group inside Mod_g. (Here $g = 3 + \frac{r}{2}$, by Riemann-Hurwitz).