Basics of quantum transport in single-molecule junctions

Juan Carlos Cuevas
The advances in nanofabrication techniques have made possible to study the electronic transport through single atoms and molecules, which has given rise to new field of **Molecular Electronics**.

Fundamental issues:
- New physical phenomena
- Potential applications
Molecular electronics: Experimental techniques

1. Scanning tunneling microscope

2. Break-junctions

3. Electrochemical methods

4. Electromigration

Source-Drain electrodes

Au

SiO₂

Si
gate electrode
Molecular electronics: Functional structures

1. **Diode:** Au-SAM-Ti-Au (Nanopore) 4-thioacetatebiphenyl, M. Reed, APL (1997)

![Diode image]

2. **Switch:** Nanopore (60 K) M. Reed et al., Science (1999)

![Switch image]

![Transistor image]
Molecular electronics: Goals for the theory

- Understanding of the transport mechanisms at the molecular scale.
- Quantitative description of the transport properties.
Outline of these lectures

Lecture 1: “*Coherent transport through single-molecule junctions*”.
- 1.1 Landauer approach: relation conductance-transmission.
- 1.2 Some lessons from the resonant tunneling model.
- 1.3 Green’s functions.
- 1.4 Length dependence of the conductance.
- 1.5 Role of the molecular conjugation.
- 1.6 Quantum interferences: Fano resonances.
- 1.7 Ab initio methods: density functional theory.
- 1.8 Validity of the coherent picture.

Lecture 2: “*Single-molecule transistors: Coulomb blockade and Kondo physics*”.
- 2.1 Introduction and experimental motivation.
- 2.2 Coulomb blockade regime: rate equations.
- 2.3 The Kondo effect.
- 2.4 Experimental observation of Coulomb blockade and Kondo effect.

Lecture 3: “*Inelastic current: role of the vibration modes*”.
- 3.1 Experimental motivation.
- 3.2 Simple theoretical model: Different transport regimes.
- 3.3 First-principle calculations.
References

Main reference of these lectures:

Lecture 1: “Coherent transport through single-molecule junctions”

Reference

Chapters 13 and 14
Molecular Electronics: An Introduction to Theory and Experiment,
1.1 Landauer approach to electron transport

[Landauer, IBM J. Res. Dev. 1, 223 (1957)]

real system

\[G = \frac{2e^2}{h} T(E_F) \]

- **Landauer formula**
- **incoming** \(N_L \)
- **outgoing** \(N_R \)

electron reservoirs

scattering region

\(E_F + eV \)

\(E_F \)

\(S \)

- **G** = conductance;
- **\(T(E_F) \)** = transmission at the Fermi energy.
1.1 Understanding the Landauer formula

Electronic transport as scattering problem

Current density:

\[J = \frac{e\hbar}{2mi} \{ \psi^* \nabla \psi - \psi \nabla \psi^* \} = ev_k T(k) \]

In a solid state device:

\[I = \frac{2e}{h} \int_{-\infty}^{\infty} dE \ T(E) \left[f_L - f_R \right] \]

Linear response: \(I = GV; \ G = \text{Conductance} \). At low temperatures:

\[G = G_0 T(E_F) \]

\[G_0 = \text{Conductance quantum} \]

\[G_0 = \frac{2e^2}{h} \approx (12.9 \ \text{k}\Omega)^{-1} \]

\(T = \text{Transmission coefficient} \)
1.1 Landauer formula and simple tunneling models

Simmons’ model: a frequently used model in molecular electronics.

Example: barrier height = 4 eV and barrier width = 1 nm.

High bias: Fowler-Nordheim regime
1.2 Some lessons from the resonant tunneling model

Often the transport through a molecular junction is dominated by a single molecular orbital. Those situations can be described with the resonant tunneling model.
1.2 Some lessons from the resonant tunneling model

Landauer formula:
\[I(V) = \frac{2e}{h} \int_{-\infty}^{\infty} dE \ T(E,V) \left[f(E - eV/2) - f(E + eV/2) \right] \]

Breit-Wigner formula:
\[T(E,V) = \frac{4\Gamma_L \Gamma_R}{\left[E - \epsilon_0(V) \right]^2 + \left[\Gamma_L + \Gamma_R \right]^2} \]

- \(\epsilon_0 = \) level position
- \(\Gamma_L + \Gamma_R = \) level width
1.2 Shape of the I-V curves

\[\varepsilon_0 = 1 \text{eV}; \quad k_B T = 0.025 \text{ eV (room temperature)} \]

\[\Gamma_L = \Gamma_R = 0.1 \text{eV} \]
\[\Gamma_L = \Gamma_R = 0.05 \text{eV} \]
\[\Gamma_L = \Gamma_R = 0.02 \text{eV} \]

(a) \[\varepsilon_0 \]
(b) \[\varepsilon_0 \]
(c) \[\varepsilon_0 \]
1.2 Molecular contacts as tunnel junctions

Low bias region: \(|eV| \ll |\epsilon_0| \)

Low-bias expansion: \(I(V) \approx AV + BV^3 \Rightarrow G(V) \approx A + 3BV^2 \)
1.2 Single molecules as tunnel junctions

Cui et al. (Lindsay’s group), Science 294, 571 (2001)

A trans-Platinum(II) Complex as a Single-Molecule Insulator**

Marcel Mayor,* Carsten von Hänisch, Heiko B. Weber,* Joachim Reichert, and Detlef Beckmann
1.2 Temperature dependence of the current

Wang, Lee and Reed, PRB 68, 035416 (2003)

Voltage dependence: Again a tunnel junction!

Current independent of the temperature

FIG. 5. Measured CI2 /V data (circle symbol) is compared with calculation (solid curve) using the optimum fitting parameters of $\Phi_0 = 1.42$ eV and $\alpha = 0.65$. The calculated I (V) from a simple rectangular model ($\alpha = 1$) with $\Phi_e = 0.85$ eV is also shown as the dashed curve.

$CH_3(CH_2)_{n-1}SH$
1.2 Temperature dependence of the current

$\varepsilon_0 = 1\,\text{eV}; \quad \Gamma_L = \Gamma_R = 2\,\text{meV}$

- **Off-resonant transport** $\Rightarrow T$ independent
- **On-resonant transport** $\Rightarrow T$ dependent (as long as $T > \Gamma$)
1.2 Temperature dependence of the current

Within the resonant tunneling model, the temperature dependence of the linear conductance is given by:

\[
G(T) = \left(\frac{2e^2}{h}\right) \frac{1}{4k_BT} \int_{-\infty}^{\infty} dE \left[\frac{4\Gamma_L\Gamma_R}{(E-\epsilon_0)^2 + (\Gamma_L + \Gamma_R)^2}\right] \frac{1}{\cosh^2(\beta E/2)}; \quad \beta = 1/k_BT
\]

- **Off-resonant tunneling:** \(|\epsilon_0| >> \Gamma, k_BT\)
 \[
 G(T) = \left(\frac{2e^2}{h}\right) \frac{4\Gamma_L\Gamma_R}{\epsilon_0^2}
 \]
 (temperature-independent)

- **Weak coupling regime:** \((\Gamma << k_BT)\)
 \[
 G(T) = \left(\frac{2e^2}{h}\right) \frac{\pi\Gamma_L\Gamma_R}{\Gamma_L + \Gamma_R} \frac{1}{k_BT \cosh^2(\beta \epsilon_0/2)}
 \]

In this limit, the conductance decreases as the temperature increases.
1.2 Symmetry of the I-V curves

“Molecular rectifiers”
Arieh Aviram and Mark A. Ratner

“The construction of a very simple electronic device, a rectifier, based on the used of a single organic molecule is discussed. The molecular rectifier consists of a donor pi system and an acceptor pi system, separated by a sigma-bonded (methylene) tunneling bridge. The response of such a molecule to an applied field is calculated, and rectifier properties indeed appear.”

(...) 23 years later

R. Metzger et al., JACS 1997
1.2 Symmetry of the I-V curves

Single-level model: asymmetric coupling

\[\varepsilon_0(V) = \varepsilon_0 + \frac{\left(\Gamma_L - \Gamma_R \right) eV}{2} \]

\[\begin{aligned} \varepsilon_0 &= 1 \text{ eV} \\ \Gamma_R &= 20 \text{ meV} \end{aligned} \]
1.2 The resonant tunneling model at work

1.3 Calculation of the transmission: Green’s functions

\[G_{i\alpha,j\beta}(t,0) = -i \langle c_{i\alpha}(t) c_{j\beta}^+(0) \rangle \]

Green’s function

Equation of motion?

\[\frac{d c_{i\alpha}(t)}{d t} = \frac{i}{\hbar} \left[c_{i\alpha}(t), \hat{H} \right] \]

\[\hat{G}^{r,a}(E) = \left[E \pm i\eta - \hat{H} \right]^{-1} \]

(\(\eta = 0^+ \))

\[\hat{H} = \hat{H}_L + \hat{H}_R + \hat{H}_C + \left(\hat{V}_{LC} + \hat{V}_{RC} + h.c. \right) \]

Three subsystems: left (L), right (R) and center (C)
1.3 Calculation of the transmission: Green's functions

\[
\hat{H} = \begin{pmatrix}
\hat{H}_L & \hat{V}_{LC} & 0 \\
\hat{V}_{CL} & \hat{H}_C & \hat{V}_{CR} \\
0 & \hat{V}_{RC} & \hat{H}_R
\end{pmatrix}
\]

\[\hat{G}_{CC}^{r,a}(E) = \left[E \pm i\eta - \hat{H}_C - \hat{\Sigma}_{L}^{r,a} - \hat{\Sigma}_{R}^{r,a} \right]^{-1} \]

where \(\hat{\Sigma}_{\mu}^{r,a}(E) = \hat{V}_{\mu}[E \pm i\eta - \hat{H}_\mu]^{-1} \hat{V}_{\mu} \) \((\mu = L, R) \) are the self-energies

\(\hat{\Gamma}_\mu = \text{Im}(\hat{\Sigma}_\mu) \quad \text{---> scattering rates} \)

\[
T(E) = 4 \text{Tr}\left[\hat{\Gamma}_L(E)\hat{G}_{CC}^{r}(E)\hat{\Gamma}_R(E)\hat{G}_{CC}^{a}(E)\right]
\]

\[
\hat{t} = 2\hat{\Gamma}_L^{1/2} \hat{G}_{CC}^{r} \hat{\Gamma}_R^{1/2}
\]

Box:

\[
T(E) = \text{Tr}\left[\hat{tt}^+\right]
\]
1.3 Example: resonant tunneling model

- Derivation of the Breit-Wigner formula for the transmission through a single electronic level from the general expression of the transmission.

\[H_C = \varepsilon_0 \]

- Self-energies:
 \[\Sigma_{L,R}^a = i \Gamma_{L,R} = (\Sigma_{L,R}^r)^* \]

- Scattering rates:
 \[\Gamma_{L,R} = \text{Im}(\Sigma_{L,R}^a) \]

- Green's functions:
 \[\hat{G}_{cc}^{r,a}(E) = \left[(E \pm i\eta)\hat{1} - \hat{H}_C - \hat{\Sigma}_{L,R}^r - \hat{\Sigma}_{L,R}^a \right]^{-1} \]

Transmission (Breit-Wigner formula)

\[T(E) = 4 \text{Tr} \left[\hat{\Gamma}_L(E) \hat{G}_{cc}^{r}(E) \hat{\Gamma}_R(E) \hat{G}_{cc}^{a}(E) \right] = \frac{4 \Gamma_L \Gamma_R}{(E - \varepsilon_0)^2 + (\Gamma_L + \Gamma_R)^2} \]
1.3 Two-level model: Conductance of a hydrogen molecule

- The hydrogen molecule forms a stable bridge between Pt electrodes.

- The conductance is $G \sim G_0$ and it is largely dominated by a single conduction channel.
1.3 Two-level model

- Derivation of the expression of the transmission through a hydrogen molecule.

\[\begin{align*}
\text{Hamiltonian:} & \quad \hat{H}_C = \begin{pmatrix} \varepsilon_0 & t_H \\ t_H & \varepsilon_0 \end{pmatrix} \\
\text{Self-energies:} & \quad \hat{\Sigma}_L^a = \begin{pmatrix} i\Gamma_L & 0 \\ 0 & 0 \end{pmatrix}; \quad \hat{\Sigma}_R^a = \begin{pmatrix} 0 & 0 \\ 0 & i\Gamma_R \end{pmatrix} \\
\text{Scattering rates:} & \quad \hat{\Gamma}_{L,R} = \text{Im}(\hat{\Sigma}_{L,R}^a) \\
\text{Green's functions:} & \quad \hat{G}_{CC}^{r,a}(E) = \left[(E \pm i\eta)\hat{1} - \hat{H}_C - \hat{\Sigma}_L^a - \hat{\Sigma}_R^a \right]^{-1}
\end{align*} \]

Transmission

\[
T(E) = 4\text{Tr}\left[\hat{\Gamma}_L(E)\hat{G}_{CC}^r(E)\hat{\Gamma}_R(E)\hat{G}_{CC}^a(E) \right] = \frac{4\Gamma^2 t_H^2}{[(E - \varepsilon_+)^2 + \Gamma^2][(E - \varepsilon_-)^2 + \Gamma^2]}
\]

where \(\varepsilon_\pm = \varepsilon_0 \pm t_H \) (bonding and anti-bonding states).
1.3 Two-level model

Bonding and antibonding states:

\[\varepsilon_{\pm} = \varepsilon_0 \pm t_H \]

Transmission:

\[T(E) = \frac{4\Gamma^2 t_H^2}{[(E - \varepsilon_+)^2 + \Gamma^2][(E - \varepsilon_-)^2 + \Gamma^2]} \]
1.4 Length dependence of conductance

Wang, Lee and Reed,

The conductance often decays exponentially with the length of the molecule

\[G = G_0 e^{-\beta d} \]

Typical values of \(\beta \) range from 2-4 nm\(^{-1}\) for conjugated molecules to 8-12 nm\(^{-1}\) for aromatic compounds.
1.4 Length dependence of conductance

\[I(V) = \frac{2e}{h} \int_{-\infty}^{\infty} dET(E,V) [f_L - f_R] \]

\[G = \frac{2e^2}{h} T(E_F) \]

\[T(E) = 4 \Gamma_L \Gamma_R |G_{1N}(E)|^2 \]

Off-resonant tunneling: \(\max(t_{i,i+1}) \ll \min(|E - \epsilon_i|) \Rightarrow G_{1N} \approx \frac{1}{E - \epsilon_N} \prod_{i=1}^{N-1} \frac{t_{i,i+1}}{E - \epsilon_i} \)

Homogeneous bridge: \(t_{i,i+1} = t \) and \(\epsilon_i = \epsilon \)

\[\Rightarrow T(E) \approx \frac{4 \Gamma_L \Gamma_R}{|t|^2} \left| \frac{t}{E - \epsilon} \right|^{2N} \propto e^{-\beta(E)L} \]

\[\beta(E) = \frac{2}{\alpha} \ln \left| \frac{E - \epsilon}{t} \right| \]

\(\alpha = \) lattice constant; \(Na = L \)
1.5 Role of the conjugation in π-electron systems

Hückel model for a benzene molecule:

Eigenenergies and eigenfunctions:

\[
\begin{align*}
E_1 &= \varepsilon_0 - 2|t|; & E_2 &= E_3 = \varepsilon_0 - |t|; \\
E_4 &= E_5 = \varepsilon_0 + |t|; & E_6 &= \varepsilon_0 + 2|t| \\
\end{align*}
\]

\[
\begin{align*}
|\phi_1\rangle &= \frac{1}{\sqrt{6}} (|1\rangle + |2\rangle + |3\rangle + |4\rangle + |5\rangle + |6\rangle); & |\phi_2\rangle &= \frac{1}{\sqrt{12}} (2|1\rangle + |2\rangle - |3\rangle - 2|4\rangle - |5\rangle + |6\rangle); \\
|\phi_3\rangle &= \frac{1}{2} (|2\rangle + |3\rangle - |5\rangle - |6\rangle); & |\phi_4\rangle &= \frac{1}{\sqrt{12}} (2|1\rangle - |2\rangle - |3\rangle + 2|4\rangle - |5\rangle - |6\rangle); \\
|\phi_5\rangle &= \frac{1}{2} (|2\rangle - |3\rangle + |5\rangle - |6\rangle); & |\phi_6\rangle &= \frac{1}{\sqrt{6}} (|1\rangle - |2\rangle + |3\rangle - |4\rangle + |5\rangle - |6\rangle)
\end{align*}
\]
1.5 Role of the conjugation in π-electron systems

Computation of the transmission through a benzene junction using a Hückel model to describe the π-electrons in this molecule.

Model for the metal-benzene-metal junction:

- Hamiltonian:
 \[
 \hat{H}_C = \begin{pmatrix}
 \varepsilon_0 & -t & 0 & 0 & 0 & -t \\
 -t & \varepsilon_0 & -t & 0 & 0 & 0 \\
 0 & -t & \varepsilon_0 & -t & 0 & 0 \\
 0 & 0 & -t & \varepsilon_0 & -t & 0 \\
 0 & 0 & 0 & -t & \varepsilon_0 & -t \\
 -t & 0 & 0 & 0 & -t & \varepsilon_0 \\
 \end{pmatrix}
 \]

- Self-energies:
 \[
 (\Sigma^a_L)_{ij} = \begin{cases}
 i\Gamma_L & \text{if } i = j = 1 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 \[
 (\Sigma^a_R)_{ij} = \begin{cases}
 i\Gamma_R & \text{if } i = j = 4 \\
 0 & \text{otherwise}
 \end{cases}
 \]
1.5 Role of the conjugation in \(\pi \)-electron systems

- Scattering rates: \(\hat{\Gamma}_{L,R} = \text{Im}(\Sigma^a_{L,R}) \)

- Green’s functions: \(\hat{G}_{CC}^{r,a}(E) = \left[(E \pm i\eta)\hat{1} - \hat{H}_C - \hat{\Sigma}_{L}^{r,a} - \hat{\Sigma}_{R}^{r,a}\right]^{-1} \)

- Transmission: \(T(E) = 4 \text{Tr}\left[\hat{\Gamma}_L(E)\hat{G}_{CC}^{r}(E)\hat{\Gamma}_R(E)\hat{G}_{CC}^{a}(E)\right] = 4\Gamma_L\Gamma_R\left|\hat{G}_{1,4}^{a}(E)\right|^2 \)

Examples:

![Graph showing transmission as a function of \((E-\varepsilon_0)/\Gamma\) for different \(\Gamma\) values. Symmetric junction: \(\Gamma_L = \Gamma_R = \Gamma\).]
1.5 Role of the conjugation in π-electron systems

LETTERS

Dependence of single-molecule junction conductance on molecular conformation

Latha Venkataraman1,4, Jennifer E. Klare2,4, Colin Nuckolls2,4, Mark S. Hybertsen1,4 & Michael L. Steigerwald2

Influence of the conjugation (two-ring molecules)
1.5 Role of conjugation in π-electron systems: origin of $\cos^2 \theta$

Off-resonant tunneling: $\max(t_{i,i+1}) << \min(|E - \epsilon_i|)$ \implies $G_{1N} \approx \frac{1}{E - \epsilon_N} \prod_{i=1}^{N-1} \frac{t_{i,i+1}}{E - \epsilon_i}$

In a conjugated molecule, the coupling between different segments is mediated by a $\pi - \pi$ hopping element:

$t_{\pi-\pi} = t_0 \cos \theta \implies T \propto \cos^2 \theta$
1.6 Quantum Interferences: Fano Resonances

Anti-resonance (vanishing transmission):

\[E = \varepsilon_0 \]

Transmission maxima:

\[E = \varepsilon = \frac{1}{2} \left(\varepsilon + \varepsilon_0 \right) \pm \sqrt{\left(\varepsilon - \varepsilon_0 \right)^2 + 4t^2} \]

\[\varepsilon_0 = 2 \text{ eV}; \varepsilon = 0.0 \text{ eV}; \Gamma_L = \Gamma_R = 0.1 \text{ eV} \]
1.7 Ab initio methods: Density functional theory

- **Hohenberg–Kohn Theorems:**
 - The energy of the ground state can be determined from the electron density ρ.

- **Kohn–Sham Approach:**
 - Functional: $E[\rho] = T_S[\rho] + J[\rho] + E_{\text{ext}}[\rho] + E_{\text{XC}}[\rho]$
 - Electron density ρ.
 - $T_S[\rho]$ exact kinetic energy of a non-interacting system with the same density as the interacting one.
 - $J[\rho]$ classical Coulomb part.
 - $E_{\text{ext}}[\rho]$ external part (nuclei, ...).
 - $E_{\text{XC}}[\rho]$ exchange correlation part.
 - BP86: exchange part Becke 1988 and correlation part Perdew 1986
1.7 Density functional theory

- Variational approach leads to **Kohn–Sham Equations**:

 - \(F_{KS}^{ij} = \varepsilon_{ij} \) (integro-differential equations)

 \[
 F_{KS} = -\frac{1}{2} \nabla^2 + \int \frac{\rho(\vec{r}_2)}{r_{12}} d\vec{r}_2 + V_{XC}(\vec{r}_1) - \sum_A \frac{Z_A}{r_{1A}}
 \]

- Linear combination of local orbitals:
 - \(j_i = \sum_n c_{ni} \phi_n \)

- Linear set of equations: \(F_{KS} C = \varepsilon SC \)

 - Kohn – Sham matrix: \((F_{KS})_{ij} = \int \phi_i(\vec{r}) f_{KS}(\vec{r}) \phi_j(\vec{r}) d\vec{r}\)
 - Coefficient matrix: \((C)_{ij} = c_{ij}\)
 - Overlap matrix: \((S)_{ij} = \int \phi_i(\vec{r}) \phi_j(\vec{r}) d\vec{r}\)
 - Diagonal matrix of the orbital energies \(\varepsilon \).
1.7 DFT in molecular electronics

Challenge:

- Ab initio description of the electronic structure of an infinite (non-periodic) system.

- Corresponding description of the electronic transport.

Density functional theory + Green’s function techniques

Quantum Chemistry Package TURBOMOLE: R. Ahlrichs, Universität Karlsruhe.
1.7 Our approach: Cluster-based method

\[G = \frac{2e^2}{h} T(E_F) = G_0 \text{Tr} \left[\hat{t}^\dagger \hat{t} \right] (E_F) = G_0 \sum_i \tau_i(E_F) \]

\[\hat{t}(E) = \hat{\Gamma}_L^{1/2}(E) \hat{G}_{CC}^a(E) \hat{\Gamma}_R^{1/2}(E) \]

- Green’s functions:
 \[\hat{G}_{CC}^a = (E^a \hat{S}_{CC} - \hat{H}_{CC} - \hat{\Sigma}_L^a - \hat{\Sigma}_R^a)^{-1} \]

- self-energy:
 \[\hat{\Sigma}_{XX}^a = (\hat{H}_{CX} - E \hat{S}_{CX}) \hat{\Sigma}_{XX}^a (\hat{H}_{XC} - E \hat{S}_{XC}) \]

- scattering rate:
 \[\hat{\Gamma}_X = 2 \text{Im} \left\{ \hat{\Sigma}_X^a \right\} \]

Quantum Chemistry Package **TURBOMOLE**: R. Ahlrichs, Universität Karlsruhe
1.7 Our approach: Cluster-based method

- Bulk parameters extracted from large metal cluster to describe the lead Green’s functions.

Electrode surface Green’s functions constructed from bulk parameters with an iterative decimation technique.
1.7 An example: C_{60} molecular junctions

Constant-current STM image of Cu(100)-C_{60} at 8 K.
(Sample voltage $V = 1.7$ V, tunneling current $I = 1$ nA).

Conductance vs. tip displacement.
The tip is made of W.
1.7 Electronic structure of C_{60}

Electronic structure of an isolated C_{60} molecule (DFT, BP86 functional, def-SVP basis set):

HOMO: -5.90 eV (5-fold degenerate)
LUMO: -4.26 eV (3-fold degenerate)

($\text{HOMO-LUMO gap: } 1.64$ eV)
1.7 Conductance of ideal Au-C$_{60}$-Au junctions

Top geometry:
- Transport dominated by a single conduction channel.

Hollow geometry:
- Transport dominated by two conduction channels.

- $G_{\text{top}} = 0.55 \ G_0$
- $G_{\text{hollow}} = 1.85 \ G_0$

Channel decomposition

![Graph showing the transmission spectra for top and hollow geometries](image-url)
1.7 Determining the geometry of Au-C₆₀-Au junctions

Animation of the formation process of a Au-C₆₀-Au junction:
1.7 Transport properties of $\text{Au-C}_6\text{O-Au}$ junctions

- Binding energy of the molecular junction.
- Charge on the C60 molecule.
- Linear conductance.
- Thermopower (room temperature).

The most stable geometry the C$_{60}$ is not inside the gold junction.

Typically, the C$_{60}$ is negatively charged.

Conductance plateau: $0.07-0.2 \ G_0$.

Negative thermopower: LUMO-dominated transport.
\section*{1.8 Final remarks: Validity of the coherent picture}

\[\Delta E = |\varepsilon_0 - E_F| = \text{injection energy} \]
\[\Gamma = \Gamma_L + \Gamma_R = \text{level width} \]

\begin{itemize}
 \item **Traversal time:**
 \[\tau = \frac{\hbar}{\sqrt{\Delta E^2 + \Gamma^2}} \]
 \item **Energy scales:**
 \[e-e: U; e-ph: \lambda \]
\end{itemize}

\textbf{Coherent transport:}
\[\tau \ll \min(\hbar/U, \hbar/\lambda) \]

\textbf{Incoherent transport:}
\[\tau \gg \min(\hbar/U, \hbar/\lambda) \]