Differenciating Canted Phases from Phase Separation regions in Doped Manganites with Spin Waves

José María Ronán (U. of Illinois)
Joan Soto (U. of Barcelona, Spain)

cond-mat/9911471

Outline
I. Continuum Double Exchange Model
II. Spin Waves in Magnetic ordered configurations
III. Canted Phases vs. Phase Separation
Effective Potential for homogeneous configurations is obtained after integrating out the fermions in the path integral

$$V_{eff} = Jaf N^2 \left[2 y^2 - 1 - A \left((y_0 + y)^{5/2} + (y_0 - y)^{5/2} \right) \right]$$

$$A = \frac{2^{3/2}}{15 \pi^2} \frac{t}{Jaf N^2 a^3}$$

$$y = \cos \frac{\Theta}{2} \quad \Rightarrow \quad \text{Canting angle}$$

$$y_0 \quad \Rightarrow \quad \text{Chemical Potential measure}$$

Doping is conjugate of chemical potential

$$x = -a^3 \frac{\partial V_{eff}}{\partial \mu} = -a^3 \frac{t}{\mu} \frac{\partial V_{eff}}{\partial y_0}$$
\[x = -\alpha^3 \frac{\partial V_{\text{eff}}}{\partial \mu} = -\frac{\alpha^3}{t} \frac{\partial V_{\text{eff}}}{\partial \phi} \]

Figure 2: Phase diagram in the \((x, A)\) plane. \(PSi\) \((i = 1, 2, 3, 4)\) indicates the new regions where the phases at their boundary may coexist. The \(x = 0\) axis corresponds to the \(AFI\) phase. The two dashed lines are the boundaries for the reliability of our model for \(z|J_H| M/2(J_{AF}\alpha^3 M^2) \sim 50\) and \(z|J_H| M/2(J_{AF}\alpha^3 M^2) \sim 200\) respectively. Only the part of the phase diagram to the left of the corresponding dashed line is trustworthy in each case.

\[\frac{t}{J_{AF}\alpha^3 N^2} \sim 10-20 \implies A \sim 1-2 \]
II. Spin Waves in Magnetically Ordered Configurations

Magnetic Order \rightarrow Spontaneous Symmetry Breaking

Spontaneous Symmetry Breaking \rightarrow Goldstone Modes (Spin Waves)

\[T \rightarrow \frac{1}{\Phi_0} \quad \Rightarrow \quad U(x) = U(x) \Phi_0 \]

\[U(x) = e^{i(\pi^2(x) S^2 + \pi^2(x) S^2)} \]

Symmetry principles allow us to write general effective Lagrangians (model independent)
• Ferromagnetic Configuration ($SU(2) \rightarrow U(1)$)

\[S = \pi^{-} i \delta t \pi^{+} - \frac{1}{2\mu} \delta_{i} \pi^{-} \delta_{i} \pi^{+} \]

Schrödinger eq.: Quadratic dispersion

• Antiferromagnetic Configuration ($SU(2) \rightarrow U(1)$)

\[L = \pi^{+} \pi^{-} \pi^{+} - \nu^{2} \delta_{i} \pi^{-} \delta_{i} \pi^{+} \]

Wave equation: Linear dispersion

• Canted Configuration ($SU(2) \rightarrow 1$)

\[S = \pi^{-} i \delta t \pi^{+} - \frac{1}{2\mu} \delta_{i} \pi^{-} \delta_{i} \pi^{+} + \frac{1}{2} \delta_{+} \pi^{3} \delta_{+} \pi^{3} - \frac{\nu^{2}}{2} \delta_{i} \pi^{3} \delta_{i} \pi^{3} \]

\[\pi^{+}(x) \rightarrow \text{Quadratic dispersion} \]

\[\pi^{3}(x) \rightarrow \text{Linear dispersion}. \]
Dispersion relations in Manganites

In the CDW there are two sources of spin waves terms in the Lagrangian:

1) Heisenberg term
2) Interaction electron-spin wave

After integrating out the electrons in the path integral, a dependence on the doping raises:

Different interaction for every configuration (F, AF, C)

Different dependence of the dispersion relations on the doping.
IV. Canted Phases vs. Phase Separation

Phase Separation Region guess:
- Two macroscopic F and AF domains
- The interphase does not modifies qualitatively the properties

PS: One F and two AF branches
C: One F and one AF branches

PS: Splitting of the AF branches by a magnetic field
C: No modification of the AF branch by a magnetic field.

Different behaviour of the mass and velocity with the doping
PS: Figure A = 2.20
C: Figure A = 0.80
Figure 1: The dependence of the velocities and the masses on the doping for the $F - AF$ phase separation region and the canted phase. $\bar{v}^2 = (15\pi^2 A)2mzv^2/6z^{3/2}(J_{AF}a^3M^2)$ and $m/m' = (15\pi^2 A)m/z^{3/2}m'$. The horizontal dotted lines correspond to the phase separation regions, and the vertical dotted lines correspond to the phase transitions.
Conclusions

- A simple continuum model describes the low energy and long distance properties for manganites systems.

- Phase Diagram: AF, F, Canted, and Phase Sep.

- The effective lag, for spin waves in the low energy and momentum presents:
 - F: One quadratic branch
 - AF: Two linear branches
 - C: One quadratic and one linear

- We presented the the spin waves dispersion relations in the manganites (dependence on the doping).

- Three distinctive characteristic of the spin waves differentiate the canted phases from the phase separation regime.