A Circuitous Route to Noncoding RNA
Jeremy E. Wilusz and Phillip A. Sharp
Science 340, 440 (2013);
DOI: 10.1126/science.1238522

If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here.

Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here.

The following resources related to this article are available online at www.sciencemag.org (this information is current as of May 8, 2013):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/content/340/6131/440.full.html

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/content/340/6131/440.full.html#related

This article cites 14 articles, 5 of which can be accessed free:
http://www.sciencemag.org/content/340/6131/440.full.html#ref-list-1

This article appears in the following subject collections:
Molecular Biology
http://www.sciencemag.org/cgi/collection/molec_biol
Most genetic information is expressed as, and transcribed by, proteins. Yet, less than 2% of the human genome actually codes for proteins, prompting a search for functions for the other 98% of the genome, once considered to be mostly “junk DNA.” Transcription is pervasive, however, and high-throughput sequencing has identified tens of thousands of distinct RNAs generated from the non–protein–coding portion of the genome (1). These so-called noncoding RNAs vary in length, but like protein-coding RNAs, appear to be linear molecules with 5′ and 3′ termini, reflecting the defined start and end points of RNA polymerase on the DNA template. But do all RNAs have to be linear?

Circular RNAs that have covalently linked ends are found in pathogens such as viroids (virus-like infectious particles), circular satellite viruses, and hepatitis delta virus—which causes severe liver disease in humans infected with hepatitis B and replicates by a rolling-circle–based mechanism (2). A handful of circular RNAs generated from eukaryotic genomes have also been identified (3, 4), but their role is unclear as they are generated by seemingly rare errors in RNA splicing. Because eukaryotes contain split genes, their precursor mRNAs (pre-mRNAs) must be modified such that noncoding introns are removed and protein-coding exons are joined together (see the figure). In these rare cases that generated circular RNAs, the splicing machinery failed to join the 3′ end of one exon to the 5′ end of the next instead appeared to mis-splice by, for example, joining the two ends of a single exon together. High-throughput sequencing data combined with new computational algorithms (5–8) have now revealed thousands of circular RNAs in species ranging from humans to archaea.

Human fibroblasts alone have more than 25,000 circular RNAs (5). Derived from ~15% of actively transcribed genes, these circles contain mostly exonic sequences (usually between one and five exons). Large numbers of circular RNAs accumulate in the cytoplasm of cells, sometimes exceeding the abundance of the associated linear mRNA by a factor of 10 (5, 7). This is likely because circular RNAs are resistant to degradation by many cellular RNA decay machineries, which recognize the ends of linear RNAs.

For a subset of circular RNAs, the circularization signals appear to be evolutionarily conserved, as some were detected in both human and mouse (5, 6). The splicing machinery is very likely involved in their biogenesis as canonical splicing signals generally immediately flank their sequences. However, the exact mechanism by which the splicing machinery selects particular regions to circularize is still unclear. The presence of inverted repeats in the surrounding introns and/or exon skipping events may play a role (3, 5, 9).

One particular circular RNA found predominantly in human and mouse brain is ~1500 nucleotides in length and, surprisingly, contains more than 70 evolutionarily conserved binding sites for the microRNA miR-7 (6, 9). MicroRNAs are ~21-nucleotide RNAs that function by base pairing to mRNAs and repressing protein production and/or causing mRNA degradation (10). However, a microRNA can bind to any transcript that contains a complementary sequence and, indeed, this circular RNA may efficiently bind ~20,000 miR-7 microRNAs per cell (6), thereby preventing miR-7 from binding other RNAs. Consistent with a “sponging” model (11), decreasing expression of this circular RNAs sequester microRNAs. Noncoding introns (flanked by splice sites (ss)) are removed from pre-mRNA by the splicing machinery and a poly(A) tail is added to prevent mRNA degradation (left). Linear mRNA is then translated by ribosomes unless it becomes bound by microRNAs that are associated with argonaute (Ago) protein. The latter interaction inhibits translation and/or promotes mRNA degradation. The splicing machinery can also “backsplice” and generate circular RNAs whose 5′ and 3′ ends are covalently linked (right). Large numbers of these circular RNAs sequester microRNAs from binding mRNA targets.

Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. E-mail: wilusz@mit.edu; sharppa@mit.edu
circular RNA in cells caused mRNAs containing miR-7 binding sites to also decrease in number, indicative of increased binding of miR-7 to these mRNAs leading to their degradation (6, 9). Additional circular RNAs may function similarly to regulate the activity of other micro RNAs because, in general, microRNA binding sites are abundant in circular RNAs (6). For example, in the mouse, sex-determining region Y (Sry) plays a key role in testes development and generates a circular RNA that contains 16 miR-138 binding sites (9). Circular RNAs thus join a growing class of naturally occurring microRNA “sponges,” which includes competing endogenous RNAs and pseudogene (nonfunctional gene) RNAs (12). Compared to competing endogenous RNAs and pseudogene RNAs, however, circular RNAs are likely much more potent microRNA sponges as they are expressed in greater amounts and contain many more microRNA binding sites. Furthermore, unlike competing endogenous RNAs, circular RNAs appear to be resistant to RNA degradation triggered by microRNAs and thus could have long half-lives (9).

Beyond regulating microRNAs, circular RNAs may bind and sequester RNA-binding proteins or even base pair with RNAs besides microRNAs, resulting in the formation of large RNA-protein complexes. Other circular RNAs may produce proteins, given that synthetic circular RNAs can be efficiently translated (13). As even linear RNAs are thought to circularize during translation through protein-protein interactions between factors binding the 5′ and 3′ ends of the mRNA, RNA circularization, whether by direct covalent bonds or noncovalent means such as protein bridging or Watson-Crick base pairing, may be much more common than is currently appreciated. The discovery of such a large class of previously unknown RNAs also raises the question of what other RNAs might have been missed. Considering that RNA structural elements, such as triple helices, efficiently prevent degradation from RNA termini (14), it is becoming increasingly clear that the cell uses a myriad of distinct ways to process and stabilize RNA molecules.

References
3. B. Capel et al., Cell 73, 1019 (1993).

CHEMISTRY

Are Gold Clusters in RF Fields Hot or Not?

Hong Koo Kim,1 George W. Hanson,2 David A. Geller3

Nanoparticles are finding increasing applications in diagnostics, imaging, and therapeutics in biology and medicine. Gold nanoparticles (Au NPs) have received a great deal of interest because of their distinctive optical, electronic, and molecular-recognition properties, as well as biocompatibility. One promising yet ambitious application for Au NPs is noncontact hyperthermia of cancer. By attaching tailor-made ligands, Au NPs can recognize and lock onto receptors on the surface of tumor cells. Under illumination by light, Au NPs can absorb radiation energy and selectively heat and destroy tumor volumes without collateral damage to neighboring healthy tissue. This type of noninvasive, specific, active targeting with Au NPs is highly desirable from a clinical perspective, but its use in cancer intervention has yet to be demonstrated.

1Department of Electrical and Computer Engineering, Petersen Institute of Nanoscience and Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA. 2Department of Electrical Engineering, University of Wisconsin, Milwaukee, WI 53211, USA. 3Department of Surgery, UPMC Liver Cancer Center, University of Pittsburgh, Pittsburgh, PA 15261, USA. E-mail: gellerda@upmc.edu

The use of radio-frequency (RF) waves instead of light for heating Au NPs is appealing because of the larger penetration depth of RF waves in tissue, which would increase the tissue volumes that can be interrogated. A number of experimental studies have reported increased tumor cell destruction in the presence of Au NPs. One capacitive RF apparatus, in which a 13.56-MHz RF field is applied across two parallel plate electrodes (1), can produce marked heating (1–3). Moran et al. hypothesized that the increased heat dissipation in Au NP solutions was caused by increased Joule (resistive) heating in Au NPs (3). By implicitly assuming that the applied electric field penetrates through the Au NP without attenuation (i.e., no shielding effect of free electrons in the metal), a phenomental amount of power dissipation was calculated for Au NPs and was used to explain the observed solution heating.

This type of Joule heating of Au NPs by RF fields has been disputed on both experimental and theoretical grounds (4, 5). Li et al. showed that the heating of Au NP solutions arose from the background ionic solution, not the Au NPs themselves. After separating Au NPs from the solution via centrifugation and resuspending them in deionized water, negligible RF absorption was observed for a variety of Au NPs ranging in size from 5 to 200 nm. These findings contradict previous conclusions about the heating rate dependence on particle size and concentration and disprove the hypothesis that Au NPs directly absorb RF energy.

Unlike the case at optical frequencies, where a photothermal effect can arise from electromagnetic field penetration into the particle, Au NPs respond differently to RF fields. Given the low oscillation frequency of RF energy, free electrons in metals respond essentially instantaneously and their drift cancels the incident electric field. This shielding effect renders Au NPs unbeatable by RF electric fields; any observed heating is Joule heating of the ionic solvent (6).

McCoy et al. now report RF heating of gold cluster solutions tested in an inductively coupled RF apparatus—that is, inside a coil where the magnetic field dominates over the electric field (7). First, p-mercaptobenzoic acid (pMBA) was used to create a fixed-size crystalline nanocluster, Au102(pMBA)44...