A NOTE ON THE OFF-DIAGONAL MUCKENHOUPT-WHEEDEN CONJECTURE

DAVID CRUZ-URIBE, SFO, JOSÉ MARÍA MARTELL, AND CARLOS PÉREZ

Abstract. We obtain the off-diagonal Muckenhoupt-Wheeden conjecture for Calderón-Zygmund operators. Namely, given $1 < p < q < \infty$ and a pair of weights (u, v), if the Hardy-Littlewood maximal function satisfies the following two weight inequalities:

$$M : L^p(v) \to L^q(u) \quad \text{and} \quad M : L^{p'} (u^{1-p'}) \to L^{q'} (v^{1-q'})$$

then any Calderón-Zygmund operator T and its associated truncated maximal operator T_\ast are bounded from $L^p(v)$ to $L^q(u)$. Additionally, assuming only the second estimate for M then T and T_\ast map continuously $L^p(v)$ into $L^{q, \infty}(u)$. We also consider the case of generalized Haar shift operators and show that their off-diagonal two weight estimates are governed by the corresponding estimates for the dyadic Hardy-Littlewood maximal function.

1. Introduction and Main results

In the 1970s, Muckenhoupt and Wheeden conjectured that given $p, 1 < p < \infty$, a sufficient condition for the Hilbert transform to satisfy the two weight norm inequality

$$H : L^p(v) \to L^p(u)$$

is that the Hardy-Littlewood maximal operator satisfy the pair of norm inequalities

$$M : L^p(v) \to L^p(u),$$
$$M : L^{p'} (u^{1-p'}) \to L^{p'} (v^{1-q'})$$

Moreover, they conjectured that the Hilbert transform satisfies the weak-type inequality

$$H : L^p(v) \to L^{p, \infty}(u)$$

provided that the maximal operator satisfies the second “dual” inequality.

Both of these conjectures readily extend to all Calderón-Zygmund operators (see the definition below). Very recently, both conjectures were disproved:

Date: March 22, 2012.

1991 Mathematics Subject Classification. 42B20, 42B25.

Key words and phrases. Haar shift operators, Calderón-Zygmund operators, two-weight inequalities, testing conditions.

The first author was supported by a grant from the Faculty Research Committee and the Stewart-Dorwart Faculty Development Fund at Trinity College; the first and third authors are supported by grant MTM2009-08934 from the Spanish Ministry of Science and Innovation; the second author is supported by grant Grant MTM2010-16518 from the same institution.
the strong-type inequality by Reguera and Scurry [11] and the weak-type inequality by the first author, Reznikov and Volberg [5].

Remark 1.1. A special case of these conjectures, involving the A_p bump conditions, has been considered by several authors: see [1, 2, 3, 4, 5, 9].

In this note we prove the somewhat surprising fact that the Muckenhoupt-Wheeden conjectures are true for off-diagonal inequalities. Our main result is Theorem 1.2 below. We also prove an analogous result for the Haar shift operators (the so-called dyadic Calderón-Zygmund operators) with the Hardy-Littlewood maximal operator replaced by the dyadic maximal operator: see Theorem 1.3 below.

To state our results we first give some preliminary definitions. By weights we will always mean non-negative, measurable functions. Given a pair of weights (u, v), hereafter we will assume that $u > 0$ on a set of positive measure and $u < \infty$ a.e., and $v > 0$ a.e. and $v < \infty$ on a set of positive measure. We will also use the standard notation $0 \cdot \infty = 0$.

Calderón-Zygmund operators. A Calderón-Zygmund operator T is a linear operator that is bounded on $L^2(\mathbb{R}^n)$ and

$$Tf(x) = \int_{\mathbb{R}^n} K(x, y)f(y)dy, \quad f \in L^\infty_c(\mathbb{R}^n), \quad x \notin \text{supp } f,$$

where the kernel K satisfies the size and smoothness estimates

$$|K(x, y)| \leq \frac{C}{|x - y|^n}, \quad x \neq y,$$

and

$$|K(x, y) - K(x', y)| + |K(y, x) - K(y, x')| \leq C \frac{|x - x'|^6}{|x - y|^{n+6}},$$

for all $|x - y| > 2|x - x'|$.

Associated with T is the truncated maximal operator

$$T_*f(x) = \sup_{0 < \epsilon < \epsilon' < \infty} \left| \int_{|x - y| < \epsilon'} K(x, y)f(y)dy \right|.$$

Let M denote the Hardy-Littlewood maximal operator, that is,

$$Mf(x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)|dy = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q |f(y)|dy.$$

where the supremum is taken over all cubes in \mathbb{R}^n with sides parallel to the coordinate axes.

Theorem 1.2. Given a Calderón-Zygmund operator T, let $1 < p < q < \infty$ and let (u, v) be a pair of weights. If the maximal operator satisfies

\begin{align*}
& (1.1) \quad M : L^p(v) \to L^q(u) \quad \text{and} \quad M : L^{q'}(u^{1-q'}) \to L^{p'}(v^{1-p'}), \\
& (1.2) \quad \|Tf\|_{L^q(u)} \leq C\|f\|_{L^p(v)} \quad \text{and} \quad \|T_*f\|_{L^q(u)} \leq C\|f\|_{L^p(v)}.
\end{align*}

Analogously, if the maximal operator satisfies
\begin{equation}
M : L^{q'}(u^{1-p'}) \to L^p(v^{1-p'}),
\end{equation}
then
\begin{equation}
\|Tf\|_{L^{q'}\to L^p} \leq C\|f\|_{L^p(v)} \quad \text{and} \quad \|T_*f\|_{L^{q'}\to L^p} \leq C\|f\|_{L^p(v)}.
\end{equation}

If the pairs of weights \((u,v)\) satisfy any of the conditions in (1.1), then the weights \(u\) and \(v^{1-p'}\) are locally integrable. This is a consequence of a characterization of the two weight norm inequalities for the maximal operator due to Sawyer [12]. He proved that the \(L^p - L^q\) inequality holds if and only if for every cube \(Q\),
\[
\left(\int_Q M(u^{1-p'}\chi_Q)(x)^q u(x) \, dx \right)^{1/q} \leq C \left(\int_Q v(x)^{1-p'} \, dx \right)^{1/p} < \infty,
\]
and the \(L^q - L^p\) inequality holds if and only if
\[
\left(\int_Q M(u\chi_Q)(x)^{p'} v(x)^{1-p'} \, dx \right)^{1/p'} \leq C \left(\int_Q u(x) \, dx \right)^{1/q'} < \infty.
\]

It is straightforward to construct pairs of weights that satisfy these conditions. For instance, in \(\mathbb{R}\) both of these conditions follow easily for every \(1 < p \leq q < \infty\) and the pair of weights \((u,v)\) with \(u = \chi_{[0,1]}\) and \(v^{-1} = \chi_{[2,3]}\) (i.e., \(v = 1\) in \([2,3]\) and \(v = \infty\) elsewhere). Indeed, we only need to check Sawyer’s inequalities for cubes \(Q\) that intersect both \([0,1]\) and \([2,3]\), in which case we have \(M(\chi_{[2,3]\cap Q})(x) \leq \|2,3\cap Q\|\) for every \(x \in [0,1] \cap Q\), and \(M(\chi_{[0,1]\cap Q})(x) \leq \|0,1\cap Q\|\) for every \(x \in [2,3] \cap Q\). These readily imply the desired estimates.

Dyadic Calderón-Zygmund operators. A generalized dyadic grid \(\mathcal{D}\) in \(\mathbb{R}^n\) is a set of generalized dyadic cubes with the following properties: if \(Q \in \mathcal{D}\) then \(\ell(Q) = 2^k\), \(k \in \mathbb{Z}\); if \(Q,R \in \mathcal{D}\) and \(Q \cap R \neq \emptyset\) then \(Q \subset R\) or \(R \subset Q\); the cubes in \(\mathcal{D}\) with \(\ell(Q) = 2^{-k}\) form a disjoint partition of \(\mathbb{R}^n\) (see [9] and [10] for more details).

We say that \(g_Q\) is a generalized a Haar function associated with \(Q \in \mathcal{D}\) if
\begin{enumerate}
\item \((a)\) \text{ supp}(g_Q) \subset Q;
\item \((b)\) if \(Q' \in \mathcal{D}\) and \(Q' \subset Q\), then \(g_Q\) is constant on \(Q'\);
\item \((c)\) \(\|g_Q\|_{L^\infty} \leq 1\).
\end{enumerate}

Given a dyadic grid \(\mathcal{D}\) and a pair \((m,k) \in \mathbb{Z}^2_+\), a linear operator \(S\) is a generalized Haar shift operator (that is, a dyadic Calderón-Zygmund operator) of complexity type \((m,k)\) if it is bounded on \(L^2(\mathbb{R}^n)\) and
\[
Sf(x) = \sum_{Q \in \mathcal{D}} S_Q f(x) = \sum_{Q \in \mathcal{D}} \sum_{Q' \in \mathcal{D}_{m}(Q)} \frac{\langle f, g_{Q'}^{Q''} \rangle}{|Q|} g_{Q''}(x),
\]
where \(\mathcal{D}_j(Q) \) stands for the dyadic subcubes of \(Q \) with side length \(2^{-j}\ell(Q) \), \(g_{Q'}^{Q''} \) is a generalized Haar function associated with \(Q' \) and \(g_{Q''}^{Q'} \) is a generalized Haar function associated with \(Q'' \). We say that the complexity of \(S \) is \(\kappa = \max(m, k) \). We also define the truncated Haar shift operator

\[
S_\epsilon f(x) = \sup_{0 < \epsilon < \epsilon' < \infty} \left| S_{\epsilon, \epsilon'} f(x) \right| = \sup_{\epsilon \leq \ell(Q) \leq \epsilon'} \left| \sum_{Q \in \mathcal{D}} S_Q f(x) \right|.
\]

An important example of a Haar shift operator on the real line is the Haar shift (also known as the dyadic Hilbert transform) \(H^d \), defined by

\[
H^d f(x) = \sum_{I \in \Delta} \langle f, h_I \rangle (h_{I-}(x) - h_{I+}(x)),
\]

where, given a dyadic interval \(I \), \(I^- \) and \(I^+ \) are its right and left halves, and

\[
h_I(x) = \left| I \right|^{-1/2} (\chi_{I-}(x) - \chi_{I+}(x)).
\]

After renormalizing, \(h_I \) is a Haar function on \(I \) and one can write \(H^d \) as a generalized Haar shift operator of complexity 1. These operators have played a very important role in the proof of the \(A_2 \) conjecture: see [4, 6, 7] and the references they contain for more information.

Associated with the dyadic grid \(\mathcal{D} \) is the dyadic maximal function

\[
M_{\mathcal{D}} f(x) = \sup_{x \in Q \in \mathcal{D}} \int_Q |f(y)| dy.
\]

Note that \(M_{\mathcal{D}} \) is dominated pointwise by the Hardy-Littlewood maximal operator.

We can now state our result for dyadic Calderón-Zygmund operators.

Theorem 1.3. Let \(S \) be a generalized Haar shift operator of complexity \(\kappa \). Given \(1 < p < q < \infty \) and a pair of weights \((u, v) \), if the dyadic maximal operator satisfies

\[
M_{\mathcal{D}} : L^p(v) \to L^q(u) \quad \text{and} \quad M_{\mathcal{D}} : L^q(u^{1-\frac{1}{q}'}) \to L^{p'}(v^{1-\frac{1}{p}'}) \tag{1.5}
\]

then

\[
\|Sf\|_{L^q(u)} \leq C\kappa^2 \|f\|_{L^p(v)} \quad \text{and} \quad \|S_* f\|_{L^q(u)} \leq C\kappa^2 \|f\|_{L^p(v)}. \tag{1.6}
\]

Analogously, if the dyadic maximal operator satisfies

\[
M_{\mathcal{D}} : L^q(u^{1-\frac{1}{q}'}) \to L^{p'}(v^{1-\frac{1}{p}'}) \tag{1.7}
\]

then

\[
\|Sf\|_{L^q(u^{1-\frac{1}{q}'})} \leq C\kappa^2 \|f\|_{L^p(v)} \quad \text{and} \quad \|S_* f\|_{L^q(u^{1-\frac{1}{q}'})} \leq C\kappa^2 \|f\|_{L^p(v)}. \tag{1.8}
\]
2. Proofs of the Main results

Proof of Theorem 1.2. We will prove our estimates for T_*; the ones for T are completely analogous.

Given a dyadic grid \mathcal{D} we say that $\{Q_{j,k}^k\}_{j,k}$ is a sparse family of dyadic cubes if for any k the cubes $\{Q_{j,k}^k\}_{j}$ are pairwise disjoint; if $\Omega_k := \cup_j Q_{j,k}^k$, then $\Omega_{k+1} \subset \Omega_k$; and $|\Omega_{k+1} \cap Q_{j,k}^k| \leq \frac{1}{2}|Q_{j,k}^k|$. Given \mathcal{D} and a sparse family $\mathcal{S} = \{Q_{j,k}^k\}_{j,k} \subset \mathcal{D}$, define the positive dyadic operator \mathcal{A} by

$$\mathcal{A}f(x) = \mathcal{A}_{D,\mathcal{S}}f(x) = \sum_{j,k} f_{Q_{j,k}^k} \chi_{Q_{j,k}^k}(x)$$

where $f_Q = \int_Q f(y) dy$.

For our proof we will use the main result in [9, 10]. Given a Banach function space X and a non-negative function f,

$$(2.1) \quad \|T_* f\|_X \leq C(T, n) \sup_{\mathcal{A}, \mathcal{S}} \|\mathcal{A}_{\mathcal{A}, \mathcal{S}} f\|_X,$$

where the supremum is taken over all dyadic grids \mathcal{D} and sparse families $\mathcal{S} \subset \mathcal{D}$. To prove Theorem 1.2 we apply this result with $X = L^q(u)$ or $X = L^{q, \infty}(u)$; it will then suffice to show that our assumptions on M guarantee that $\mathcal{A}_{\mathcal{D}, \mathcal{S}}$ satisfies the corresponding two weight inequalities.

To prove this fact we will use a result by Lacey, Sawyer and Uriate-Tuero [8]. Given a sequence of non-negative constants $\alpha = \{\alpha_Q\}_{Q \in \mathcal{D}}$, define the positive operator

$$T_\alpha f(x) = \sum_{Q \in \mathcal{D}} \alpha_Q f_Q \chi_Q(x).$$

Further, given $R \in \mathcal{D}$ we define the “outer truncated” operator

$$T^{R}_\alpha f(x) = \sum_{Q \in \mathcal{D} : Q \supset R} \alpha_Q f_Q \chi_Q(x).$$

In [8] it was shown that for all $1 < p < q < \infty$, $T_\alpha : L^p(v) \to L^q(u)$ if and only if there exist constants C_1 and C_2 such that for every $R \in \mathcal{D}$

$$(2.2) \quad \left(\int_{\mathbb{R}^n} T^{R}_\alpha (v^{1-p'} \chi_R)(x)^q u(x) dx \right)^{1/q} \leq C_1 \left(\int_{\mathbb{R}^n} v(x)^{1-p'} dx \right)^{1/p},$$

and

$$(2.3) \quad \left(\int_{\mathbb{R}^n} T^{R}_\alpha (u \chi_R)(x)^{p'} v(x)^{1-p'} dx \right)^{1/p'} \leq C_2 \left(\int_{\mathbb{R}^n} u(x) dx \right)^{1/p}.$$

Furthermore, for $1 < p < q < \infty$, $T_\alpha : L^p(v) \to L^{q, \infty}(u)$ holds if and only if there exists a constant C_2 such that for every $R \in \mathcal{D}$, (2.3) holds.

We can apply these results to the operator $\mathcal{A} = \mathcal{A}_{\mathcal{D}, \mathcal{S}}$ where \mathcal{D} and \mathcal{S} are fixed, since $\mathcal{A} = T_\alpha$ with $\alpha_Q = 1$ if $Q \in \mathcal{S}$ and $\alpha_Q = 0$ otherwise. Fix $R \in \mathcal{D}$; to estimate $\mathcal{A}^{R}_{D, \mathcal{S}}$, take the increasing family of cubes $R = R_0 \subsetneq R_1 \subsetneq R_2 \subsetneq \ldots$ with $R_k \in \mathcal{D}$ and $\ell(R_k) = 2^k \ell(R)$. Define $R_{-1} = \emptyset$. Note that
supp $\mathcal{A}^R \subset \cup_{k \geq 0} R_k$. Then for every non-negative function f and for every $x \in R_k \setminus R_{k-1}$ with $k \geq 0$ we have that

$$0 \leq \mathcal{A}^R(f \chi_R)(x) \leq \sum_{j=0}^{\infty} (f \chi_R)_{R_j} \chi_{R_j}(x) = f_R \sum_{j=k}^{\infty} 2^{-jn} \lesssim f_R 2^{-kn} = (f \chi_R)_{R_k} \leq M_{\mathcal{D}}(f \chi_R)(x).$$

Consequently, for every $x \in \mathbb{R}^n$,

$$0 \leq \mathcal{A}^R(f \chi_R)(x) \lesssim M_{\mathcal{D}}(f \chi_R)(x) \leq M(f \chi_R)(x). \quad (2.4)$$

Inequality (2.4) together with our hypothesis (1.1) implies (2.2) and (2.3). Therefore, we have that $\mathcal{A} : L^p(v) \to L^q(u)$ with constants depending on the dimension, p, q and the implicit constants in (1.1). Therefore, by Lerner’s estimate (2.1) we get $T^\star : L^p(v) \to L^q(u)$ as desired.

For the weak-type estimates we proceed in the same manner, using the fact that (1.3) yields (2.4) and therefore $\mathcal{A} : L^p(v) \to L^{q, \infty}(u)$. This in turn implies, by Lerner’s estimate (2.1) applied to $X = L^{q, \infty}(u)$, that $T^\star : L^p(v) \to L^{q, \infty}(u)$.

Proof of Theorem 1.3. Fix \mathcal{D} and a generalized Haar shift operator of complexity κ. As before we can work with S^\star. We can repeat the previous argument except that we want to keep the fixed dyadic structure D. A careful examination of [9, Section 5] shows that, given a Banach function space X, we have

$$\|S^\star f\|_X \leq C_n \kappa^2 \sup_{\mathcal{I}} \|\mathcal{A}_{\mathcal{D}, \mathcal{I}} f\|_X, \quad f \geq 0, \quad (2.5)$$

where the supremum is taken over all sparse families $\mathcal{I} \subset \mathcal{D}$. We emphasize that in [9, Section 5] there is an additional supremum over the dyadic grids \mathcal{D}. This is because at some places the dyadic maximal operator is majorized by the regular Hardy-Littlewood maximal operator and the latter is in turn controlled by a sum of $\mathcal{A}_{\mathcal{D}_\alpha, \mathcal{I}_\alpha}$ for 2^n dyadic grids \mathcal{D}_α. However, keeping $M_{\mathcal{D}}$ one can easily show that (2.5) holds. Details are left to the interested reader.

Given (2.5), we fix a sparse family $\mathcal{I} \subset \mathcal{D}$ and write $\mathcal{A} = \mathcal{A}_{\mathcal{D}, \mathcal{I}}$. Arguing exactly as before we obtain (2.4). Thus, (1.5) implies (2.2) and (2.3) and therefore the result from [8] yields $\mathcal{A} : L^p(v) \to L^q(u)$ with constants depending on the dimension, p, q and the implicit constants in (1.5). Combining this with Lerner’s estimate (2.5) applied to $X = L^{q, \infty}(u)$ we conclude as desired that $S^\star : L^p(v) \to L^{q, \infty}(u)$. We get the weak-type estimate by adapting the above proof in exactly the same way.

References

David Cruz-Uribe, SFO, Dept. of Mathematics, Trinity College, Hartford, CT 06106-3100, USA
E-mail address: david.cruzuribe@trincoll.edu

José María Martell, Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Científicas, C/ Nicolás Cabrera, 13-15, E-28049 Madrid, Spain
E-mail address: chema.martell@icmat.es

Carlos Pérez, Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, 41012 Sevilla, Spain
E-mail address: carlosperez@us.es