The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy

Leo Gross,1 Fabian Mohr,1 Nikolaj Mall,1 Peter Liljeroth,1,2 Gerhard Meyer1

Resolving individual atoms has always been the ultimate goal of surface microscopy. The scanning tunneling microscope images atomic-scale features on surfaces, but resolving single atoms within an adsorbed molecule remains a great challenge because the tunneling current is primarily sensitive to the local electron density of states close to the Fermi level. We demonstrate imaging of molecules with unprecedented atomic resolution by probing the short-range chemical forces with use of noncontact atomic force microscopy. The key step is functionalizing the microscope’s tip apex with suitable, atomically well-defined terminations, such as CO molecules. Our experimental findings are corroborated by ab initio density functional theory calculations. Comparison with theory shows that Pauli repulsion is the source of the atomic resolution, whereas van der Waals and electrostatic forces only add a diffusive attractive background.

Noncontact atomic force microscopy (NC-AFM), usually operated in frequency-modulation mode (1), has become an important tool in the characterization of nanostructures on the atomic scale. Recently, impressive progress has been made, including atomic resolution with chemical identification (2) and measurement of the magnetic exchange force with atomic resolution (3). Moreover, lateral (4) and vertical (5) manipulation of atoms and the determination of the vertical and lateral forces during such manipulations (6) have been demonstrated. Striking results have also been obtained in AFM investigations of single molecules. For example, atomic resolution was achieved on single-walled carbon nanotubes (SWNTs) (7, 8), and the force needed to switch a molecular conformation was measured (9).

However, the complete chemical structure of an individual molecule has so far not been imaged with atomic resolution. The reasons that make AFM investigations on single molecules so challenging are the strong influence of the exact

References and Notes
13. Materials and methods are available as supporting material on Science Online.
16. We took $C_{\text{res}} = 57 \text{ aF}$ from Fig. 2A. Dissipation caused by He gas used to thermalize the resonator was included by means of pumping the gas, which left the temperature stable for a short moment.
17. We obtained $C_{\text{q}}^{\text{res}}/k \approx 6 \times 10^{-22} \text{ F}^2/\text{N}$, which has to be compared with $C_{\text{q}}^{\text{res}} = 10^{-13} \text{ F}^2/\text{N}$ obtained by using commercial simulators and $k = 10^{-9} \times 10^{-11} / \text{N m}$ from (1). The value of Q is 3×10^3, which is somewhat smaller than expected in the quantum regime $Q = 8kT/\Delta E_{\text{coul}} = 9 \times 10^{10} \text{ s}^{-1}$ (where ΔE_{coul} is the maximum conductance of a Coulomb-blockade peak).

Supporting Online Material
www.sciencemag.org/cgi/content/full/1174290/DC1 Materials and Methods
31 March 2009; accepted 19 June 2009
Published online 23 July 2009; 10.1126/science.1174290
Include this information when citing this paper.

1IBM Research, Zurich Research Laboratory, 8803 Rischlikon, Switzerland.
2Debye Institute for Nanomaterials Science, Utrecht University, Post Office Box 80000, 3508 TA Utrecht, Netherlands.
3To whom correspondence should be addressed. E-mail: lgr@zurich.ibm.com
atomic composition and the geometry of the tip, as well as the relatively low stability of the system, which can result in unintentional lateral or vertical manipulation of the molecule during imaging. As will be shown below, both problems can be solved by preparing a well-defined tip by deliberately picking up different atoms and molecules with the tip apex. The exact knowledge of the tip termination also facilitates quantitative comparison with first-principles calculations, which is essential for understanding the nature of the tip-sample interaction.

To benchmark AFM resolution on molecules, we investigated pentacene (C_{22}H_{14}, Fig. 1A), a well-studied linear polycyclic hydrocarbon consisting of five fused benzene rings. State-of-the-art scanning tunneling microscopy (STM) studies of pentacene on metal, such as Cu(111) (10), and thin-film insulators, such as NaCl on Cu(111) (11, 12), have been performed recently. On insulating films, STM was used to image the molecular orbitals near the Fermi level, E_F, whereas on metals the molecular orbitals were broadened and distorted because of coupling to the electronic states of the substrate. STM is sensitive to the density of states near E_F, which extends over the entire molecule. This prevents the direct imaging of the atomic positions (or core electrons) in such planar aromatic molecules by STM. In this work, we present atomically resolved AFM measurements of pentacene both on a Cu(111) substrate and on a NaCl insulating film.

For atomic resolution with the AFM, it is necessary to operate in the short-range regime of forces, where chemical interactions give substantial contributions. In this force regime, it is desirable to work with a cantilever of high stiffness with oscillation amplitudes on the order of 1 Å, as pointed out by Giessibl (13). Our low-temperature STM/AFM has its basis in a qPlus sensor design (14) and is operated in an ultrahigh vacuum at a temperature of 5 K. The high stiffness of the tuning fork [spring constant k_0 \approx 1.8 \times 10^4 N/m (15), resonance frequency f_0 = 23,165 Hz, and quality factor Q \approx 5 \times 10^3] allows stable operation at oscillation amplitudes down to 0.2 Å. A metal tip (16) was mounted on the free prong of the tuning fork, and a separate tip wire (which is insulated from the electrodes of the tuning fork) was attached to measure the tunneling current (17). The bias voltage V was applied to the sample.

Modification of the STM tip apex is known to have a profound influence on the achievable image resolution (10, 11, 18, 19). We explored the effects of controlled atomic-scale modification of the AFM tip and show that suitable tip termination results in dramatically enhanced atomic scale contrast in NC-AFM imaging. We imaged pentacene molecules (Fig. 1A) in STM (Fig. 1B) and AFM (Fig. 1, C and D) modes on Cu(111) by using a CO-terminated tip. For these measurements, a CO molecule was deliberately picked up with the tip (16), which led to an increased resolution in the AFM mode (see below). From previous investigations, it is known that the CO molecule is adsorbed with the carbon atom toward the metal tip (18, 19).

The CO molecule slightly affects the STM image, and several faint maxima and minima are visible because of the interaction of the CO with the pentacene orbitals, similar to the effect of a pentacene-modified tip (10). The AFM images (Fig. 1, C and D) were recorded in constant-height mode; that is, the tip was scanned without z feedback parallel to the surface while the frequency shift \Delta f was being recorded (16). In this and all of the following measurements, the tip height z is always given with respect to the STM set point over the substrate. The use of constant-height operation was critical because it allowed stable constant imaging in the region where \Delta f is a nonmonotonic function of z. In the AFM images (Fig. 1, C and D), the five hexagonal carbon rings of each pentacene molecule are clearly resolved.

We observed local maxima of \Delta f(x, y) above the edges of the hexagons, near the carbon atom positions, and minima above the centers of the carbon rings (hollow sites), in concordance to the measurements on SWNTs (7). Even the carbon-hydrogen bonds are imaged, indicating the positions of the hydrogen atoms within the pentacene molecule. Additionally, each molecule is surrounded by a dark halo.

To demonstrate that imaging conditions are also stable for the case of organic molecules on insulators, we used a thin insulating layer [NaCl(2 ML)/Cu(111)], that is, two atomic layers of NaCl on Cu(111) as substrate (Fig. 2). Furthermore, to study the influence of the tip termination, we performed measurements with different atomic modifications of the tip apex. In addition to the Ag- (Fig. 2A) and CO-terminated (Fig. 2B) tips, we also recorded \Delta f images with Pointed out by Giessibl (13), we investigated pentacene (C_{22}H_{14}, Fig. 1A), a well-studied linear polycyclic hydrocarbon consisting of five fused benzene rings. State-of-the-art scanning tunneling microscopy (STM) studies of pentacene on metal, such as Cu(111) (10), and thin-film insulators, such as NaCl on Cu(111) (11, 12), have been performed recently. On insulating films, STM was used to image the molecular orbitals near the Fermi level, E_F, whereas on metals the molecular orbitals were broadened and distorted because of coupling to the electronic states of the substrate. STM is sensitive to the density of states near E_F, which extends over the entire molecule. This prevents the direct imaging of the atomic positions (or core electrons) in such planar aromatic molecules by STM. In this work, we present atomically resolved AFM measurements of pentacene both on a Cu(111) substrate and on a NaCl insulating film. For atomic resolution with the AFM, it is necessary to operate in the short-range regime of forces, where chemical interactions give substantial contributions. In this force regime, it is desirable to work with a cantilever of high stiffness with oscillation amplitudes on the order of 1 Å, as pointed out by Giessibl (13). Our low-temperature STM/AFM has its basis in a qPlus sensor design (14) and is operated in an ultrahigh vacuum at a temperature of 5 K. The high stiffness of the tuning fork [spring constant k_0 \approx 1.8 \times 10^4 N/m (15), resonance frequency f_0 = 23,165 Hz, and quality factor Q \approx 5 \times 10^3] allows stable operation at oscillation amplitudes down to 0.2 Å. A metal tip (16) was mounted on the free prong of the tuning fork, and a separate tip wire (which is insulated from the electrodes of the tuning fork) was attached to measure the tunneling current (17). The bias voltage V was applied to the sample.

Modification of the STM tip apex is known to have a profound influence on the achievable image resolution (10, 11, 18, 19). We explored the effects of controlled atomic-scale modification of the AFM tip and show that suitable tip termination results in dramatically enhanced atomic scale contrast in NC-AFM imaging. We imaged pentacene molecules (Fig. 1A) in STM (Fig. 1B) and AFM (Fig. 1, C and D) modes on Cu(111) by using a CO-terminated tip. For these measurements, a CO molecule was deliberately picked up with the tip (16), which led to an increased resolution in the AFM mode (see below). From previous investigations, it is known that the CO molecule is adsorbed with the carbon atom toward the metal tip (18, 19).

The CO molecule slightly affects the STM image, and several faint maxima and minima are visible because of the interaction of the CO with the pentacene orbitals, similar to the effect of a pentacene-modified tip (10). The AFM images (Fig. 1, C and D) were recorded in constant-height mode; that is, the tip was scanned without z feedback parallel to the surface while the frequency shift \Delta f was being recorded (16). In this and all of the following measurements, the tip height z is always given with respect to the STM set point over the substrate. The use of constant-height operation was critical because it allowed stable constant imaging in the region where \Delta f is a nonmonotonic function of z. In the AFM images (Fig. 1, C and D), the five hexagonal carbon rings of each pentacene molecule are clearly resolved. We observed local maxima of \Delta f(x, y) above the edges of the hexagons, near the carbon atom positions, and minima above the centers of the carbon rings (hollow sites), in concordance to the measurements on SWNTs (7). Even the carbon-hydrogen bonds are imaged, indicating the positions of the hydrogen atoms within the pentacene molecule. Additionally, each molecule is surrounded by a dark halo.

To demonstrate that imaging conditions are also stable for the case of organic molecules on insulators, we used a thin insulating layer [NaCl(2 ML)/Cu(111)], that is, two atomic layers of NaCl on Cu(111) as substrate (Fig. 2). Furthermore, to study the influence of the tip termination, we performed measurements with different atomic modifications of the tip apex. In addition to the Ag- (Fig. 2A) and CO-terminated (Fig. 2B) tips, we also recorded \Delta f images with

![Fig. 1. STM and AFM imaging of pentacene on Cu(111). (A) Ball-and-stick model of the pentacene molecule. (B) Constant-current STM and (C and D) constant-height AFM images of pentacene acquired with a CO-modified tip. Imaging parameters are as follows: (B) set point I = 110 pA, V = 170 mV; (C) tip height z = -0.1 Å [with respect to the STM set point above Cu(111)], oscillation amplitude A = 0.2 Å; and (D) z = 0.0 Å, A = 0.8 Å. The asymmetry in the molecular imaging in (D) (showing a “shadow” only on the left side of the molecules) is probably caused by asymmetric adsorption geometry of the CO molecule at the tip apex.](image1)

![Fig. 2. Constant-height AFM images of pentacene on NaCl(2ML)/Cu(111) using different tip modifications (16). (A) Ag tip, z = -0.7 Å, A = 0.6 Å; (B) CO tip, z = +1.3 Å, A = 0.7 Å; (C) Cl tip, z = -1.0 Å, A = 0.7 Å; and (D) pentacene tip, z = +0.6 Å, A = 0.5 Å. The z values are given with respect to a STM set point of I = 2 pA, V = 200 mV above the NaCl(2 ML)/Cu(111) substrate.](image2)
tips modified with Cl (Fig. 2C) and pentacene (Fig. 2D) (16). For each tip, the tip height \(z \) was minimized; that is, decreasing \(z \) further by a few 0.1 Å resulted in unstable imaging conditions, usually leading to the molecule being laterally displaced or picked up by the tip. Comparing the different tips, we see that their atomic termination is crucial for the contrast observed above the molecule. The highest lateral resolution was observed with CO-modified tips, and the contrast above pentacene is similar to that in the measurements on Cu(111). With metal-terminated tips

![Fig. 3. Maps of measured frequency shift \(\Delta f \) (A) and extracted vertical force \(F_z \) (B) at different tip heights \(z \). Corresponding line profiles of \(\Delta f \) (C) and \(F_z \) (D) along the long molecular axis. The data shown are part of a complete three-dimensional force field that has been measured in a box of 25 Å by 12.5 Å by 13 Å above a pentacene molecule (16). The \(z \) values are given with respect to a STM set point of \(I = 2 \) pA, \(V = 200 \) mV above the NaCl(2 ML)/Cu(111) substrate.](image)

![Fig. 4. Calculated energy map (A) for a CO-pentacene distance of \(d = 4.5 \) Å. Calculated line profiles of the energy (B), the vertical force (C), and \(\Delta f \) (D) above the long molecular axis for different molecular distances. Calculated (E) and measured (F) force-distance curves above different molecular sites: central hollow site (blue), C-C bond of central ring on long molecular axis (red), C atom of central ring on short molecular axis (green), and H atom on short axis (orange). The inset in (E) shows a measured \(\Delta f \) map with the different molecular sites indicated. In the experimental data, the force components that arise from the metal tip behind the CO molecule have been subtracted (16, 29).](image)
(Ag, Au, or Cu), the molecule would always be manipulated (usually being picked up by the tip from NaCl) before the minimum of $\Delta(z)$ was reached, and no atomic resolution could be observed in AFM measurements. The Cl termination yielded a contrast similar to that of the CO tip. However, in the AFM image acquired with the Cl tip, the minima above the hollow sites are less pronounced and the carbon rings appear smaller in diameter compared with the CO-terminated tip. The pentacene-modified tip gave a completely different contrast compared with all the other tips investigated, which indicates the strong influence of the tip modification.

In the following, we concentrate on the investigation of pentacene on NaCl(2 ML)/Cu(111) with a CO-terminated tip. We describe how the contrast depends on the tip sample distance, quantify the forces acting on the tip, and lastly compare the measurements to density functional theory (DFT) calculations in order to separate the contributions of different forces and understand the origin of the observed contrast. Frequency shift and force versus distance relations were determined by capturing a three-dimensional $({x, y, z})$ field ($16, 20, 21$) of the frequency shift with 80 by 40 by 3100 data points in a box of 25 Å by 12.5 Å by 13 Å above a pentacene molecule. We extracted the vertical forces $F_z(x, y, z)$ with the use of the method of Sader and Jarvis ($16, 22$). Figure 3A shows the measured frequency shift at different tip heights, and the extracted vertical force is shown in Fig. 3B. Corresponding line profiles along the long molecular axis are given in Fig. 3, C and D, for F_x and F_y, respectively.

For distances greater than $z = 4.2$ Å (top image in Fig. 3A), we recorded only relatively small long-range forces ($F_z < 20$ pN), and the molecule was imaged as a featureless depression (attractive interaction). With decreasing tip height, $\Delta(z)$ decreased before reaching a minimum (of about -4 Hz) above the molecular center at $z \approx 1.8$ Å. Near the minimum of $\Delta(z)$, we started observing corrugation on the atomic scale (Fig. 3C). When we decreased z further, Δ' increased again and finally became even positive over some parts of the molecule at $z = 1.2$ Å. The lateral contrast of Δ' generally increased with decreasing tip height (Fig. 3C). At the height at which Δ' crossed zero ($z \approx 1.2$ Å), we achieved the highest contrast and lateral resolution with AFM. This is the regime of maximal attractive forces (16). Decreasing the tip height further would result in instabilities and lastly in picking up the molecule by the tip.

In the force maps (Fig. 3B), we likewise observed how the contrast increased with decreasing z. For the smallest accessible tip height, that is, $z = 1.2$ Å, we measured an attractive force of 110 pN above the central carbon ring. Above the positions of the carbon atoms, the absolute values of the forces were smaller (between 60 and 90 pN) (15). These values are comparable to the maximum short-range forces acting on a silicon tip above the hollow sites and the carbon positions of a SWNT, which were recently measured as 106 pN and 75 pN, respectively (7) (also with a systematic error of about 30%).

To further elucidate the origin of the observed atomic contrast, we carried out DFT calculations ($16, 23, 24$) with highly optimized plane-wave code CPMD (25). We applied the PBE (Perdew-Burke-Ernzerhof) exchange-correlation functional (26) and used ab initio norm-conserving pseudopotentials (27). Van der Waals (vdW) forces were added semiempirically to the dispersion energy as a contribution proportional to R^{-6} (where R is the atomic distance) (28). We only included the pentacene molecule and the CO molecule in our calculations and neglected both the substrate and the metallic part of the tip. We assumed for the calculations that the CO molecule is perpendicular to the plane of the pentacene molecule, with the oxygen atom pointing toward the pentacene (16).

The calculated interaction energy surface is given in Fig. 4A, and the calculated constant-height line profiles of the energy, the vertical force, and Δ' along the central molecular axis are shown in Fig. 4, B, C, and D, respectively. The intermolecular distance d denotes the distance of the CO carbon atom to the plane of the pentacene atoms. Experiment and theory (compare Figs. 3D and 4C) concordantly showed maximal attractive forces on the order of 100 pN above the hollow sites of the pentacene molecule, whereas attractive forces above the C-C bonds were smaller. The difference in the forces measured above these two sites increased with decreasing tip height. In the short-range regime ($d < 5$ Å), differences between calculations and experiment can be observed. In the calculations, sharp peaks appear above the outer C-C bonds ($x = -10$ Å and $x = 10$ Å in Fig. 4, C and D), which are less pronounced in the experiments (Fig. 3, C and D).

For a comparison between theory and experiment, we have to estimate the contribution of the metallic tip behind the CO molecule that was not included in the calculations. For this purpose, we measured the force acting on a purely metallic tip, then picked up a CO molecule and measured the force again under otherwise identical conditions. The difference of the forces for identical tip positions yielded the estimated contribution from the CO molecule only. We observed that the CO contribution to the force predominates in the relevant regime, whereas the metallic part of the tip contributed only about 30% to the attractive forces and gave no corrugation on the atomic scale (16). Calculated force-versus-distance curves (Fig. 4E) above different molecular sites around the central carbon ring of the molecule are compared with experimental data, with the contribution of the metallic tip subtracted (Fig. 4F). We observe good qualitative agreement between theory and experiment in terms of the maximal values of the force and the relative order in which the maximal attractive forces are reached above the different atomic sites (29). Quantitatively, the agreement is excellent for $d > 5$ Å. In the short-range regime ($4.5 Å < d < 5$ Å), the calculations overestimate the difference in the forces above the C-C bond and the hollow site. These discrepancies in the short-range region might arise because of the simplifications assumed in the calculations, namely not taking the substrate or the tip behind the CO into account and the semiempirical treatment of vdW forces. Another origin of the discrepancies could be the increasing influence of noise in the experimental data for small z values.

The calculations take into account forces of three different physical origins, namely electrostatic forces, vdW forces, and Pauli repulsive forces. Comparing their contributions to the overall force, we found that the electrostatic forces are small ($\sim 10\%$) compared with the vdW forces. These two contributions to the force show little lateral corrugation on the atomic scale and yield a diffusive attractive potential above the entire molecule, giving rise to the observed dark halo surrounding the molecules in the Δ' maps. The origin of the atomic contrast is the Pauli repulsion force, which becomes substantial when regions of high electron density overlap. These regions are concentrated to the atomic positions and to the C-C (and to a lesser extent also to the C-H) bonds in the pentacene molecule and are revealed for sufficiently small tip-sample distances ($d = 5$ Å).

We conclude that atomic resolution in NC-AFM imaging on molecules can only be achieved by entering the regime of repulsive forces because the vdW and electrostatic forces only contribute a diffusive attractive background with no atomic-scale contrast. Modifying the tip with suitable atomic or molecular terminations is required to allow the AFM to be operated in this regime while maintaining stable imaging conditions. The tip termination governs the AFM contrast, and exact knowledge of the tip is needed for a detailed interpretation of the force measurements. In the case of the CO-terminated tip, we observed a spectacular enhancement of the atomic-scale contrast and were able to resolve the atomic positions and bonds inside pentacene molecules, precisely revealing the atomic molecular structure. It may also be possible to extract details about intermolecular bonds, for example, bond order and length. Furthermore, we foresee probing the reactivity of different molecular sites with respect to the known molecule or atom at the tip apex. Such investigations could yield detailed insight into chemical reactions and catalysis. Lastly, a combination of NC-AFM with electrostatic force microscopy could be used to investigate single-electron transport and charge distributions in metal-molecule systems on the atomic scale.

References and Notes
Amplifying the Pacific Climate System Response to a Small 11-Year Solar Cycle Forcing

Gerald A. Meehl,¹ ¹Julie M. Arblaster,¹ ²Katja Matthes,³ ⁴Fabrizio Sassi,⁵ Harry van Loon¹ ⁶

One of the mysteries regarding Earth’s climate system response to variations in solar output is how the relatively small fluctuations of the 11-year solar cycle can produce the magnitude of the observed climate signals in the tropical Pacific associated with such solar variability. Two mechanisms, the top-down stratospheric response of ozone to fluctuations of shortwave solar forcing and the bottom-up coupled ocean-atmosphere surface response, are included in versions of three global climate models, with either mechanism acting alone or both acting together. We show that the two mechanisms act together to enhance the climatological equatorial tropical precipitation maxima in the Pacific, lower the eastern equatorial Pacific sea surface temperatures during peaks in the 11-year solar cycle, and reduce low-latitude clouds to amplify the solar forcing at the surface.

Postulated mechanisms that could amplify the relatively small solar forcing signal to produce such responses in the troposphere include changes in clouds in the troposphere caused by galactic cosmic rays, or associated global atmospheric electric circuit variations, though neither has been plausibly simulated in a climate model. However, there are two other plausible mechanisms, though each has not yet produced a modeled response of the magnitude seen in the observations. The first involves a “top down” response of stratospheric ozone to the ultraviolet (UV) part of the solar spectrum that varies by a few percent. Peaks in solar forcing cause the enhanced UV radiation, which stimulates additional stratospheric ozone production and UV absorption, thus warming that layer differentially with respect to latitude. The anomalous temperature gradients provide a positive feedback through wave motions to amplify the original solar forcing. The changes in the stratosphere modify tropical tropospheric circulation and thus contribute to an enhancement and poleward expansion of the tropical precipitation maxima (5, 12–16). The first demonstration of the top-down mechanism in a modeling study showed a broadening of the Hadley cells in response to enhanced UV that increased as the solar-induced ozone change was included (17).

A second “bottom up” mechanism that can magnify the response to an initially small solar forcing involves air-sea coupling and interaction with incoming solar radiation at the surface in the relatively cloud-free areas of the sub tropics. Thus, peaks in solar forcing produce greater energy input to the ocean surface in these areas, evaporating more moisture, and that moisture is carried by the trade winds to the convergence zones where more precipitation occurs. This intensified precipitation strengthens the Hadley and Walker circulations in the troposphere, with an associated increase in trade wind strength that produces greater equatorial ocean upwelling and lower equatorial SSTs in the eastern Pacific, a signal that was first discovered in observational data (1, 2). The enhanced subsidence produces fewer clouds in the equatorial eastern Pacific and the expanded subtropical regions that allow even more solar radiation to reach the surface to produce a positive feedback (18, 19). Dynamical air-sea coupling produces a transition to higher eastern equatorial SSTs of a couple of years later (20, 21). There is observational evidence for a strengthened Hadley circulation in peak solar forcing years associated with intensified tropical precipitation maxima, a stronger descending branch in the subtropics, and a stronger ascending branch in the lower latitudes (3); a poleward expansion of the Hadley circulation in peak solar years, with stronger ascending motions at the edge of the rising branch, as well as a stronger Walker circulation with enhanced upward motions in the tropical western Pacific connected to stronger descending motions in the tropical eastern Pacific (7); and enhanced summer season off-equatorial climatological monsoon precipitation over India (6, 22). This cold event—like response to peak solar forcing is different from cold events (also known as La Niña events)
Supporting Online Material for
The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy

Leo Gross,* Fabian Mohn, Nikolaj Moll, Peter Liljeroth, Gerhard Meyer

*To whom correspondence should be addressed. E-mail: lgr@zurich.ibm.com

Published 28 August 2009, Science 325, 1110 (2009)
DOI: 10.1126/science.1176210

This PDF file includes:

Materials and Methods
Figs. S1 to S5
References
The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy

Leo Gross¹*, Fabian Mohn¹, Nikolaj Moll¹, Peter Liljeroth¹,², Gerhard Meyer¹

¹ IBM Research, Zurich Research Laboratory, 8803 Rüschlikon, Switzerland.
² Debye Institute for Nanomaterials Science, Utrecht University, Post Office Box 80000, 3508 TA Utrecht, The Netherlands.
*To whom correspondence should be addressed. E-mail: lgr@zurich.ibm.com

Supporting Online Material

Sample preparation
The Cu(111) single crystal was cleaned by several sputtering and annealing cycles, and about 10% of a monolayer (ML) coverage of NaCl was evaporated at 270 K. At this temperature, mainly double layer islands of NaCl with typical lateral dimensions of about 1000 Å are formed. Single metal atoms (Au, Ag) and pentacene molecules were then thermally evaporated onto the sample at a sample temperature of about 10 K. From recent investigations, the pentacene adsorption geometries are known: On Cu(111), pentacene adsorbs parallel to one of the close-packed directions of the substrate with the center of the molecule located above a hcp hollow site (I). On NaCl(2ML)/Cu(111), the long axis
of a pentacene molecule is aligned parallel to one of the polar <011> directions of the NaCl(100) film with the molecular center located on top of a Cl ion (2). CO molecules were adsorbed on the surface by admitting CO gas at a sample temperature of about 10 K.

Tip preparation

Cu tip:
As the tip, we used a cut 50-μm-thick PtIr wire. The tip apex was coated with copper by means of controlled indentations into the Cu substrate as a starting point for all further tip preparations.

Au tip, Ag tip:
To pick up a Au or Ag atom (3), the tip was first positioned above a single Au or Ag adatom on NaCl(2 ML)/Cu(111). Then, starting from a typical set point of $I = 2 \text{ pA, } V = 200 \text{ mV}$, the tip was approached to the adatom by about 4 Å, and the event of picking up the atom was observed as a sudden jump in the tunneling current. Au or Ag adatoms were picked up deliberately with the tip, until a stable and sharp metallic tip was obtained. Such a tip is characterized by imaging single Au or Ag adatoms as circular protrusions and exhibits a comparably small frequency shift of about $Δf = (2±1) \text{ Hz}$ at a tunneling set point of $I = 2 \text{ pA, } V = 200 \text{ mV}$ above NaCl(2 ML)/Cu(111). A sharp metal tip was the starting condition for the other tip modifications that are described in the
following. All the various tips (metal, CO, Cl, pentacene) showed characteristic imaging in both STM and AFM mode, which enabled their differentiation.

CO tip:
To modify a tip with a CO molecule, we followed the routine described by Bartels et al. (4). We positioned the tip above a CO molecule on Cu(111) (arrow in Fig. S1A) and applied a voltage pulse of about 2.5 V to pick up the CO. STM images before (Fig. S1A) and after CO pick-up (Fig. S1B) show the characteristic contrast change due to the transfer of CO to the tip. With a metal tip, CO/Cu(111) is imaged as a depression (Fig. S1A), whereas it appears as a protrusion when using a CO-modified tip (Fig. S1B).

![Fig. S1. STM measurements (V = 66 mV, I = 2.3 pA, size 95 Å by 60 Å) of CO/Cu(111), before (A) and after (B) picking up a CO molecule. To pick up a CO molecule, the (metallic) tip was placed above the molecule, as indicated by the red arrow in (A). Then, the tip was retracted by 0.3 Å from the STM set point, the z-feedback was switched off and a sample bias of 2.5 V was applied for a few seconds, until a sudden change in the tunneling current indicated the transfer of the CO molecule toward the tip. Finally, the same area was imaged again to check if the tip modification was successful.](image-url)
Cl tip:

For a chlorine tip termination, we picked up a AgCl complex by approaching the tip to a Ag adatom on NaCl(2 ML)/Cu(111). In this case, a Cl vacancy often remained at the former position of the Ag adatom, indicating the transfer of a AgCl complex to the tip. Fig. S2A shows two Ag adatoms and a CO molecule on NaCl(2 ML)/Cu(111) imaged with a Ag-terminated tip. (The edge of the NaCl island and the uncovered Cu(111) surface can be seen in the upper left corner of the image). The tip was approached to a Ag adatom (red arrow in Fig. S2A) and a Cl vacancy remained at the former position of the Ag adatom (Fig. S2B) as revealed by the atomically resolved image Fig. S2C. Note that the tip exhibits a typical STM contrast due to the Cl modification, e.g. a reduced apparent diameter of Ag adatoms (Fig. S2B).

![Fig. S2](image)

Fig. S2. (A,B) STM measurements ($V = 210$ mV, $I = 2.3$ pA, size 100 Å by 50 Å) of a NaCl(2ML)/Cu(111) surface. The bright protrusions correspond to Ag adatoms, the round depression corresponds to a CO molecule adsorbed on NaCl. To pick up the AgCl complex, the tip was positioned at imaging parameters above the Ag atom indicated with the arrow and then approached by 4.5 Å, with an applied bias of 10 mV. After picking up the AgCl complex, the tip showed typical imaging conditions due to a chlorine termination. (C) The transfer of the Cl to the tip was confirmed by imaging a Cl vacancy
at the former position of the manipulated Ag atom (\(V = 210 \text{mV}, I = 4 \text{ pA, size 20 Å} \times 14 \text{ Å} \)).

Pentacene tip:

To form a pentacene tip, the tip was positioned above a pentacene molecule and then the tip height was decreased until a sudden change in the tunneling current indicated the transfer of the molecule towards the tip (1,2).

AFM imaging mode

All AFM images were obtained in constant-height mode, i.e. the tip was scanned parallel to the surface with fixed tip height \(z \), where \(z = 0 \text{ Å} \) corresponds to the STM-determined set point above the substrate. Imaging in constant-height mode increases the stability and sensitivity of the system, because no feedback circuit is needed for regulating the tip height. It also circumvents another difficulty in AFM, which is that \(\Delta f \) is a nonmonotonic function of the tip height \(z \) (the force consists of an attractive and repulsive branch). The latter fact complicates \(z \)-control by \(\Delta f \), especially in the regime of maximal negative frequency shift.

Force determination

For the determination of the full 3D force field above a pentacene molecule (data shown in Fig. 3, Fig. 4F and Fig. S4), the following routine was employed: First, a constant-
current STM image (typical imaging parameters: $I = 2$ pA, $V = 200$ mV, $A = 0.4$ Å) was acquired, with the molecule centered in the image. This served as the reference image for compensating lateral drift during the measurement. The current feedback was then turned off. After the STM tip had been retracted to an appropriate constant-height offset z_0 ($z_0 = 2.2$ Å for the measurement shown in Fig. 3 and $z_0 = 1.4$ Å for the measurement shown in Figs. 4F and S4), the tip sequentially visited every site of a 80 by 40 (x, y) grid above the molecule (a 20 by 10 grid was used for the measurement with the metallic tip in Fig. S4A). At each (x, y) position, the tip was first approached by 1.0 Å and $\Delta f(z)$ data were recorded during subsequent tip retraction by 13.0 Å. After the tip had been reapproached to z_0, it was moved laterally to the next position on the grid. After recording of Δf data at 60 (x, y) positions (corresponding to a measurement time of about 20 min), the tip was moved back to the starting position of the image and the current feedback was turned back on (this recalibrated the tip height). Then, a constant-current image was taken, and the lateral drift was determined from the cross-correlation with the reference image and compensated before continuing Δf data acquisition. We observed (and compensated) vertical drift of less than 0.2 Å/h and lateral drift of less than 1.0 Å/h.

From the $\Delta f(x, y, z)$ data obtained by this procedure, the corresponding vertical force $F_z(x, y, z)$ was calculated using the method of Sader and Jarvis (6). However, because of the small amplitudes ($A = 0.4$ Å in Fig. 3, Fig. S3, and Fig. S4), the frequency shift is in a good approximation given by the derivative of the force curve:

$$\Delta f(x, y, z) = -\frac{f_0}{2k_0} \left. \frac{\partial F_z(x, y, z')}{\partial z'} \right|_{z' = z} .$$

A sample $\Delta f(z)$ curve (original data) above one of the carbon-carbon bonds of the middle benzene ring of the molecule is shown in Fig. S3 together with the corresponding
extracted $F_z(z)$ curve. At this site, we reached positive Δf and the turning point of the
vertical force $F_z(z)$.

![Graph showing Δf vs. z and F_z vs. z.]

Fig. S3

Deconvolution of the force contributions of the metal tip and the CO molecule

The force acting between the CO tip and the surface (shown in Fig. 3B and 3D) contains
contributions due to interactions of the CO molecule with the surface and contributions of
the metal tip behind the CO molecule. To separate these contributions, we first measured
the forces using a metal tip (Fig. S4A), then picked up a CO molecule, and finally
determined the forces with this CO tip (Fig. S4B) under identical experimental conditions
as with the metal tip. It should be stressed that no observable tip change apart from the
intentional pick-up of the CO molecule has occurred between the two measurements.
Figures S4A and S4B show the forces above the long axis of a pentacene molecule using a Au tip and a CO tip, respectively (as sketched in Fig. S4D and S4E, respectively).

Fig. S4

In Fig. S4A and S4B, graphs with the same color correspond to the same absolute tip height. Fig. S4C shows the difference signal, i.e. the force on the entire CO tip (B) minus the force on the metal tip without CO (A), yielding the estimated force contribution of the CO molecule only, without the metal part of the tip (sketched in Fig. S4F). The z-values in Fig. S4 are given with respect to a STM set point of $I = 2\ \text{pA},\ V = 200\ \text{mV}$ for the CO
tip above the NaCl(2 ML)/Cu(111) substrate. In particular, the fact that the tip height corresponding to this STM set point (z_{STM}) changed when picking up the CO molecule has been taken into account. In general, z_{STM} decreased by 0.5 to 1.5 Å when a CO molecule was picked up. The z-values denoted for the Au tip in Fig. S4A, correspond to the values of z_{STM} for this Au tip, minus the change in z_{STM} due to the CO termination that was used in Fig. S4B (0.6 Å in this particular case).

Calculations

To determine the energies and forces, we carried out density functional theory calculations (7) employing the highly optimized DFT code CPMD (8). We applied the PBE (Perdew-Burke-Ernzerhof) exchange-correlation functional (9) and employed ab initio norm-conserving pseudopotentials (10). Van der Waals (vdW) forces are non-local correlations that are out of the scope of LDA (Local Density Approximation) and GGA (Generalized Gradient Approximation). This limitation was overcome by adding to the energy obtained by DFT a dispersion energy contribution in the form of $1/R^6$ (R is the interatomic distance) which has been proven to be an appropriate approach in earlier works (11). The pseudopotentials were created with the scheme of Troullier and Martins (12). The semilocal pseudopotentials were further transformed into fully separable Kleinman-Bylander pseudopotentials (13), with the d-potential chosen as the local potential, except in the case of the hydrogen atoms, for which the s-potential was chosen as the local potential. The wave functions were expanded into plane waves (14) with a kinetic energy of up to at least 200 Ry. The electron density was calculated from one k-
point, the Γ-point. We found that the errors of the interaction energies are on the order of 0.1 meV. The equilibrium lattice parameters of the molecules were found by minimizing the total energy and relaxing the ions until the forces were smaller than 1 pN.

To obtain the force \(F_z \) acting on the CO molecule in the \(z \)-direction, we calculated the total energy of the system for nine different distances between the pentacene and the CO molecule. These energies were fitted by a Lennard-Jones-type potential of the form
\[
E(d) = (a/d)^b - (u/d)^v
\]
where the exponents were not kept fixed but also extracted by fitting. The DFT energies and the corresponding Lennard-Jones fit for the CO above the center of the pentacene molecule are shown in Fig. S5 as a function of the intermolecular distance \(d \).

![Graph showing the relationship between energy and distance](image)

Fig. S5
The resulting fit parameters are $a = 2.60 \, \text{Å}, b = 12.63, u = 1.80 \, \text{Å}, v = 6.08$. The force in the z-direction, F_z, and the frequency shift Δf, which are shown as a function of the distance d in the insets of Fig. S5, are extracted by differentiating the Lennard-Jones fit function with respect to d:

$$F_z = -\frac{\partial E}{\partial d}, \quad \Delta f = -\frac{f_0}{2k_0} \frac{\partial F_z}{\partial d}.$$

The observed noise in the forces after fitting and differentiation is on the order of 5 pN. We also performed calculations, in which we allowed the atoms of both molecules to relax and permitted a tilt of the molecular axis of the CO. We found that the CO molecule is oriented perpendicularly to the molecular plane, with the oxygen atom pointing toward the pentacene molecule in the relevant z-regime. It turned out that relaxing the atoms did not change the results, and therefore – to reduce computational time – the atomic positions were not relaxed in our final calculations. The calculations indicated that the CO holds a small dipole moment oriented towards the pentacene, i.e., the O atom carries a small positive partial charge. However, the major contribution to the attractive interaction is given by the vdW force and only about 10% can be attributed to electrostatic interaction.
References