Lesson 3.
Some alternative investment rules

Prof. Beatriz de Blas

May 2006
3. Some alternative investment rules

Introduction

Capital budgeting: the decision-making process for accepting or rejecting project.

Alternative budgeting methods:

1. Net present value (review)
2. The payback period model
3. The internal rate of return model.
1. Net present value

Basic investment rule:
\[
\begin{align*}
\text{accept a project if } & NPV > 0 \\
\text{reject a project if } & NPV < 0
\end{align*}
\]

Accepting positive NPV projects benefits the shareholders.

The value of the firm rises by the NPV of the project (value-additivity property).

BUT: cash flows are risky → which discount rate to choose?

Main properties of NPV:
\[
\begin{align*}
\text{NPV uses cash flows} \\
\text{NPV uses all the cash flows of the project} \\
\text{NPV discounts the cash flows properly}
\end{align*}
\]
3. Some alternative investment rules

2. The payback period model

Consider the following project ($-50,000, $30,000, $20,000, $10,000)$

Choose a particular cutoff date: payback period. For example, $t = 2$. Then,

payback period rule: \[\begin{cases} \text{accept a project if payback period} & \leq 2 \\ \text{reject a project if payback period} & > 2 \end{cases} \]

Problems:

1. Arbitrary standard for payback period.

2. Payments after the payback period.

3. Timing of cash flows within the payback period.
3. Some alternative investment rules

3. The internal rate of return (IRR)

It provides a single number (independent of the market interest rate) summarizing the merits of the project.

IRR: what must the discount rate be to make $NPV = 0$?

IRR rule:

\[
\begin{align*}
\text{accept a project if } & IRR > \text{ discount rate} \\
\text{reject a project if } & IRR < \text{ discount rate}
\end{align*}
\]

But: the IRR rule does not always coincide with the NPV rule.
The Internal Rate of Return: Example

Consider the following project:

\[
\begin{align*}
0 & \quad 1 & \quad 2 & \quad 3 \\
-200 & & & \\
\end{align*}
\]

The internal rate of return for this project is 19.44%

\[
NPV = 0 = \frac{50}{(1 + IRR)} + \frac{100}{(1 + IRR)^2} + \frac{150}{(1 + IRR)^3}
\]
If we graph NPV versus discount rate, we can see the IRR as the x-axis intercept.

Discount Rate	**NPV**
0% | $100.00
4% | $71.04
8% | $47.32
12% | $27.79
16% | $11.65
20% | ($1.74)
24% | ($12.88)
28% | ($22.17)
32% | ($29.93)
36% | ($36.43)
40% | ($41.86)

IRR = 19.44%
3. Some alternative investment rules

Problems with the IRR approach

- Investing or Financing?, that is, are we borrowing or lending?

- Multiple rates of return

- Scale problem

- Timing problem
3. Some alternative investment rules

4. The practice of capital budgeting

Which methods are companies using?

Table 6.4 (book) % Always or almost always
Percent of CFOs who always or almost always use a given technique

<table>
<thead>
<tr>
<th>Technique</th>
<th>% Always or almost always</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal rate of return</td>
<td>75.6%</td>
</tr>
<tr>
<td>Net present value</td>
<td>74.9%</td>
</tr>
<tr>
<td>Payback method</td>
<td>56.7%</td>
</tr>
<tr>
<td>Discounted payback</td>
<td>29.5%</td>
</tr>
<tr>
<td>Accounting rate of return</td>
<td>30.3%</td>
</tr>
<tr>
<td>Profitability index</td>
<td>11.9%</td>
</tr>
</tbody>
</table>
3. Some alternative investment rules

<table>
<thead>
<tr>
<th>Table 6.5 (book)</th>
<th>Large firms</th>
<th>Small firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of use of various capital</td>
<td>Internal rate of return</td>
<td>3.41</td>
</tr>
<tr>
<td>budgeting methods</td>
<td>Net present value</td>
<td>3.42</td>
</tr>
<tr>
<td></td>
<td>Payback method</td>
<td>2.25</td>
</tr>
<tr>
<td></td>
<td>Discounted payback</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>Accounting rate of return</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>Profitability index</td>
<td>0.75</td>
</tr>
</tbody>
</table>