Goodness of fit assessment of item response theory models

Alberto Maydeu-Olivares
University of Barcelona

Madrid
November 12, 2014
Outline

• Introduction
• Overall goodness of fit testing
• Two examples
• Assessing goodness of approximation
• Fine-tuning the model: identifying misfitting items
• Final remarks
Introduction

• Statistical modeling involves finding a model that may have generated the data

• What is (absolute) goodness of fit testing?
 o Testing whether the fitted model may have generated the observed data

• Why is this important?
 o Because inferences drawn on poorly fitting models are misleading

• How misleading?
 o It depends on a number of factors, among them the discrepancy between the true and fitted model
Why is fit important?
Outline

- Introduction
- Overall goodness of fit testing
How to assess goodness of fit in IRT models

- IRT are models for multivariate categorical data
 - The goodness of fit of IRT models is assessed using goodness of fit statistics for categorical data, such as Pearson’s X^2 statistic
 - There is nothing really special about testing IRT models
Pearson’s X^2

- **Notation:**
 - $N =$ number of respondents
 - $n =$ number of items
 - $K =$ number of response alternatives (number of categories)
 - $C = K^n =$ number of possible response patterns ($c = 1, \ldots, C$)
 - $p_c =$ observed proportion of a response pattern
 - $\pi_c =$ probability of a response pattern
 - $\theta =$ vector of item parameters (not latent traits!)
 - $q =$ number of item parameters

\[
X^2 = N \sum_c \left(\frac{p_c - \hat{\pi}_c}{\hat{\pi}_c} \right)^2 = N (p - \hat{\pi})' \hat{D}^{-1} (p - \hat{\pi}), \tag{1}
\]

where $\hat{\pi} = \pi(\hat{\theta})$, $p - \hat{\pi}$ are the cell residuals, and $\hat{D} = \text{diag} (\hat{\pi})$

- For the MLE, $X^2 \overset{d}{\rightarrow} \chi^2_{C-q-1}$
Two small examples

- A 1PL (a Rasch model where the latent trait is treated as a random effect) applied to a 15-item test measuring mathematical proficiency in Chilean adults
 - $n = 15; \ N = 3,000; \ K = 2; \ q = 16; \ C = 2^{15} = 32,768; \ df = 32,751$

- Samejima’s graded model applied to the 7 items of the short version of the PROMIS depression scale
 - $n = 7; \ N = 767; \ K = 4; \ q = 35; \ C = 4^7 = 16,384; \ df = 16,348$

- **Problem:**
 - (asymptotic) p-values for X^2 are only accurate when the expected frequencies of every pattern are large ($N\pi > 5$ is the usual rule of thumb)
 - In large models (large C) that’s impossible to accomplish
 - p-values for X^2 are only accurate in models with a small number of possible response patterns (300?)

- In IRT we are interested in much larger models than $C = 300$, how do we go about testing them?
Limited information goodness of fit testing

- There have been a number of proposals, most of them involve limited information test statistics

- Key references
 - Reiser (1996, Psychometrika)
 - Cai, Maydeu-Olivares, Coffman & Thissen (British J. of Math and Stat Psych, 2006)
What is limited information goodness of fit testing?

- Multivariate categorical data admits (at least) two representations

\[
\begin{array}{c|ccc}
Y_2 & 0 & 1 & 2 \\
\hline
Y_1 & \pi_{00} & \pi_{01} & \pi_{02} \\
0 & \pi_{10} & \pi_{11} & \pi_{12} \\
1 & \hat{\pi}^{(1)}_{12} & \hat{\pi}^{(1)(2)}_{12} & \hat{\pi}^{(1)}_1 \\
\end{array}
\]

- There is a one-to-one relationship between them
- All formulae in categorical data analysis can be written using cells or moments

\[
X^2 = N (p - \hat{\pi})' \hat{D}^{-1} (p - \hat{\pi}) = N \begin{pmatrix} \hat{p}_1 - \hat{\pi}_1 \\ \hat{p}_2 - \hat{\pi}_2 \end{pmatrix}' \begin{pmatrix} \Xi_{11} & \Xi_{21} \\ \Xi_{21}' & \Xi_{22} \end{pmatrix}^{-1} \begin{pmatrix} \hat{p}_1 - \hat{\pi}_1 \\ \hat{p}_2 - \hat{\pi}_2 \end{pmatrix}, \quad (2)
\]

- Pearson’s X^2 is a quadratic form in all moments up to order n
What is limited information goodness of fit testing?

\[X^2 = N (\mathbf{p} - \hat{\pi})' \hat{\mathbf{D}}^{-1} (\mathbf{p} - \hat{\pi}) = N \begin{pmatrix} \hat{p}_1 - \hat{\pi}_1 \\ \hat{p}_2 - \hat{\pi}_2 \end{pmatrix}' \begin{pmatrix} \Xi_{11} & \Xi_{12} \\ \Xi_{21} & \Xi_{22} \end{pmatrix}^{-1} \begin{pmatrix} \hat{p}_1 - \hat{\pi}_1 \\ \hat{p}_2 - \hat{\pi}_2 \end{pmatrix}, \quad (3) \]

• A limited information test statistic is

\[L_1 = N (\hat{p}_1 - \hat{\pi}_1)' \Xi_1^{-1} (\hat{p}_1 - \hat{\pi}_1) \quad (4) \]

• For chi-square distributed statistics degrees of freedom = number of statistics – number of item parameters

• Degrees of freedom for Samejima’s model are positive when univariate and bivariate moments are used \((r = 2)\)

 o Limited information testing requires using at least univariate and bivariate moments
Moments or margins?

- **Univariate moments** = univariate probabilities that do not involve category 0

- A researcher interested in univariate testing can use
 - All univariate moments: $\hat{\pi}_1^{(1)}, \hat{\pi}_2^{(1)}, \hat{\pi}_2^{(2)}$
 - All univariate margins: $\hat{\pi}_1^{(0)}, \hat{\pi}_1^{(1)}, \hat{\pi}_2^{(0)}, \hat{\pi}_2^{(1)}, \hat{\pi}_2^{(2)}$
 - The relationship is one-to-one

- It is convenient to use moments because they are mathematically independent
 - Fewer
 - Their covariance matrix is of full rank

- Moments up to order r is equivalent to use all r-way margins

- Bivariate information = univariate and bivariate moments
Pros and cons of limited information testing

• Suppose bivariate information is used

PROS:

1) Accurate (asymptotic) p-values can be obtained with $N = 100$
 - Asymptotic approximation to the limited information statistic requires that 4-way frequencies are large
 - For r-way test, $2r$-way frequencies must be large

2) If misfit is located in the bivariate margins, higher power is obtained

CON:

• If misfit is not located in the bivariate margins, no power
Overall limited information test statistics

- Consider the quadratic form in univariate and bivariate moments

\[Q = N \left(\mathbf{p}_2 - \hat{\mathbf{p}}_2 \right)' \hat{\mathbf{W}} \left(\mathbf{p}_2 - \hat{\mathbf{p}}_2 \right). \tag{5} \]

- \(Q \) is asymptotically distributed as a mixture of independent chi-square variates.

- When \(\hat{\mathbf{W}} \) is chosen so that

\[\Sigma_2 \mathbf{W} \Sigma_2 = \Sigma_2 \mathbf{W} \Sigma_2 \tag{6} \]

where \(N \Sigma_2 \) is the asymptotic covariance matrix of \(\mathbf{p}_2 - \hat{\mathbf{p}}_2 \), \(Q \) is asymptotically chi-square

- Two ways to satisfy (6)
 - Choose \(\hat{\mathbf{W}} \) such that \(\Sigma_2 \) is a generalized inverse of \(\mathbf{W} \): \(M_2 \) of M-O and Joe (2005, 2006)

\[M_2 = N \left(\mathbf{p}_2 - \hat{\mathbf{p}}_2 \right)' \hat{\mathbf{C}}_2 \left(\mathbf{p}_2 - \hat{\mathbf{p}}_2 \right), \quad \mathbf{C}_2 = \Xi_2^{-1} - \Xi_2^{-1} \Delta_2 \left(\Delta_2' \Xi_2^{-1} \Delta_2 \right)^{-1} \Delta_2' \Xi_2^{-1}, \tag{7} \]

 - Choose \(\hat{\mathbf{W}} \) such that \(\mathbf{W} \) is a generalized inverse of \(\Sigma_2 \): \(R_2 \) of Reiser (1996)

\[R_2 = N \left(\mathbf{p}_2 - \hat{\mathbf{p}}_2 \right)' \hat{\Sigma}_2^+ \left(\mathbf{p}_2 - \hat{\mathbf{p}}_2 \right). \tag{8} \]
Third alternative:

Use an easily computable weight matrix \(\hat{W} = \hat{\mathbf{E}}_2^{-1}, \left(\text{diag}(\hat{\mathbf{E}}_2) \right)^{-1}, \mathbf{I} \) and compute \(p \)-values by adjusting \(Q \) by its asymptotic mean and variance

- With \(\hat{W} = \left(\text{diag}(\hat{\mathbf{E}}_2) \right)^{-1} \) and binary data, this is Cai et al. (2006) and Bartholomew and Leung (2002).
- Within the context of SEM, these are the Satorra-Bentler corrections.

Degrees of freedom:

- \(M_2 \): number of statistics – number of parameters
- \(R_2 \): estimated rank of \(\hat{\mathbf{E}}_2 \) (integer)
- MV: \(df = \frac{\text{tr}(\hat{W}\hat{\Sigma}_2)}{\text{tr}(\hat{W}\hat{\Sigma}_2)^2} \) (a real number)

MV corrected statistics can be transformed so that they have the same number of degrees of freedom as \(M_2 \).
The covariance matrix of the bivariate residuals (moments)

\[\Sigma_2 = \Xi_2 - \Delta_2 \text{Acov}(\hat{\theta})\Delta_2' \] \hspace{1cm} (9)

• Notation:
 o \(\Xi_2 \) = (asymptotic) covariance matrix of univariate and bivariate proportions (that exclude category 0)
 o \(\Delta_2 \) = derivatives of univariate and bivariate moments with respect to item parameters
 o \(\text{Acov}(\hat{\theta}) \) = (asymptotic) covariance matrix of item parameter estimates

• For multinomial ML (marginal ML), \(\text{Acov}(\hat{\theta}) = \hat{I}^{-1} \)
Estimating the covariance matrix of the item parameter estimates

- Expected information, \mathcal{I}_E
 - First order derivatives for all possible patterns
 - It can only be computed for small models

- Cross-products information, \mathcal{I}_{XP}
 - First order derivatives for observed patterns

- Observed information, \mathcal{I}_O
 - First and second order derivatives for observed patterns

- Sandwich (aka robust) information, $\mathcal{I}_S = \mathcal{I}_O^{-1} \mathcal{I}_{XP} \mathcal{I}_O^{-1}$

- Crossing the different estimators of the covariance matrix of the item parameter estimates with the different choices of bivariate statistics, there are many possible choices of test statistics!
Outline

- Introduction
- Overall goodness of fit testing
- Two examples
Two numerical examples

- A 1PL applied to Chilean mathematical proficiency data
 - $n = 15; \; N = 3,000; \; K = 2; \; q = 16; \; C = 2^{15} = 32,768; \; \text{df} = 32,751$

- Samejima’s graded model applied to the short version of the PROMIS anxiety scale
 - $n = 7; \; N = 767; \; K = 4; \; q = 35; \; C = 4^7 = 16,384; \; \text{df} = 16,348$

<table>
<thead>
<tr>
<th></th>
<th>PROMIS anxiety</th>
<th></th>
<th>Chilenan mathematical proficiency</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>stat</td>
<td>value</td>
<td>df</td>
<td>RMSEA</td>
<td>value</td>
</tr>
<tr>
<td>M_2</td>
<td>346.34</td>
<td>182</td>
<td>.034</td>
<td>121.32</td>
</tr>
<tr>
<td>R_2</td>
<td>386.45</td>
<td>196</td>
<td>.036</td>
<td>133.40</td>
</tr>
<tr>
<td>\bar{Y}_2</td>
<td>152.17</td>
<td>55.23</td>
<td>.048</td>
<td>22.88</td>
</tr>
<tr>
<td>\bar{L}_2</td>
<td>346.28</td>
<td>181.63</td>
<td>.034</td>
<td>121.47</td>
</tr>
<tr>
<td>\bar{Y}_2</td>
<td>357.98</td>
<td>182</td>
<td>.036</td>
<td>102.64</td>
</tr>
<tr>
<td>\bar{L}_2</td>
<td>346.81</td>
<td>182</td>
<td>.034</td>
<td>121.43</td>
</tr>
</tbody>
</table>
Type I errors, $N = 300$

<table>
<thead>
<tr>
<th>stat</th>
<th>\mathcal{I}</th>
<th>$K = 2, n = 10$</th>
<th>$K = 5, n = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$\alpha = .01$</td>
<td>$\alpha = .05$</td>
</tr>
<tr>
<td>M_2</td>
<td>–</td>
<td>.01</td>
<td>.04</td>
</tr>
<tr>
<td>Y_2</td>
<td>–</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>\bar{Y}_2</td>
<td>O</td>
<td>.01</td>
<td>.05</td>
</tr>
<tr>
<td></td>
<td>XP</td>
<td>.00</td>
<td>.00</td>
</tr>
<tr>
<td>L_2</td>
<td>–</td>
<td>.01</td>
<td>.04</td>
</tr>
<tr>
<td>\bar{L}_2</td>
<td>O</td>
<td>.01</td>
<td>.04</td>
</tr>
<tr>
<td></td>
<td>XP</td>
<td>.01</td>
<td>.05</td>
</tr>
<tr>
<td>R_2</td>
<td>O</td>
<td>.02</td>
<td>.04</td>
</tr>
<tr>
<td>XP</td>
<td></td>
<td>.00</td>
<td>.01</td>
</tr>
</tbody>
</table>

$$L_2 = N(p_2 - \hat{\pi}_2)' \hat{\Sigma}_2^{-1} (p_2 - \hat{\pi}_2), \quad Y_2 = N(p_2 - \hat{\pi}_2)' \left(\text{diag}(\hat{\Sigma}_2) \right)^{-1} (p_2 - \hat{\pi}_2), \quad (10)$$
Computational issues

- For large unidimensional models, computing the goodness of fit statistic can take longer than the estimation of the item parameters and their SEs.

- The number of univariate and bivariate moments is $s = n(K-1) + \frac{n(n-1)}{2} (K-1)^2$
 - For $n = 20$ and $K = 5$, $s = 3120$.
 - For $n = 30$ and $K = 7$, $s = 15840$ (probably unfeasible).

- When data is nominal, there is no solution.

- When data is ordinal one can use instead of a quadratic form in residual univariate and bivariate moments a quadratic form in residual (multinomial) means and cross-products.

- The number of means and cross-products is $s = \frac{n(n+1)}{2}$
 - One can test much larger models.
Means and cross products for multinomial variables

\[\kappa_i = E[Y_i] = 0 \times \Pr(Y_i = 0) + \ldots + (K_i - 1) \times \Pr(Y_i = K_i - 1), \quad (11) \]

\[\kappa_{ij} = E[Y_i Y_j] = 0 \times 0 \times \Pr(Y_i = 0, Y_j = 0) + \ldots + (K_i - 1) \times (K_j - 1) \times \Pr(Y_i = K_i - 1, Y_j = K_j - 1). \quad (12) \]

with sample counterparts \(k_i = \bar{y}_i \) (the sample mean), and \(k_{ij} = y_i'y_j' / N \) (the sample cross-product), respectively, where \(y_i' \) denotes the observed data for item \(i \).

- For our previous 2 \(\times \) 3 example, the elements of \(\kappa \) are

\[\begin{align*}
\kappa_1 &= E[Y_1] = 1 \Pr(Y_1 = 1) = \pi_1^{(1)} \\
\kappa_2 &= E[Y_2] = 1 \Pr(Y_2 = 1) + 2 \Pr(Y_2 = 1) = \pi_2^{(1)} + 2\pi_2^{(2)} \\
\kappa_{12} &= E[Y_1 Y_2] = 1 \times 1 \Pr(Y_1 = 1, Y_2 = 1) + 1 \times 2 \Pr(Y_1 = 1, Y_2 = 2) = \pi_1^{(1)(1)} + 2\pi_1^{(1)(2)}. \end{align*} \quad (13) \]
Testing large models for ordinal data, M_{ord}

- Using these statistics one can construct a goodness of fit statistic for ordinal data

\[M_{ord} = N (k - \hat{k})' \hat{C}_{ord} (k - \hat{k}), \quad C_{ord} = \Xi^{-1}_{ord} - \Xi^{-1}_{ord} \Delta_{ord} (\Delta'_r \Xi^{-1}_{ord} \Delta_{ord})^{-1} \Delta_{ord}' \Xi^{-1}_{ord}, \quad (14) \]

- It is just like M_2 except that M_{ord} uses as summaries statistics that further concentrate the information
 - If the misfit is in the direction where the information has been concentrated, M_{ord} will be more powerful than M_2

- It is good practice to check the rank of Δ_2 or Δ_{ord} in applications. If the rank of these matrices is unstable, the estimated statistic is not reliable
 - The model is empirically underidentified from the information used for testing

- M_{ord} cannot be computed when K is large and n is small due to lack of df, use M_2

- $M_{ord} = M_2$ for binary data
Outline

- Introduction
- Overall goodness of fit testing
- Two examples
- Assessing goodness of approximation
Assessing the goodness of approximation

• Finding a well-fitting model is more difficult as the number of variables increase
 o If I generate a 1-variable dataset and I ask you what statistical model I used to generate the data, it will be easier for you than if I give you a 10-variable dataset

• In our experience, finding a well-fitting model is more difficult as the number of categories increase
 o Are our models for polytomous data worse than our models for binary data?
 o Are personality/attitudinal/patient reported data more difficult to model than educational data?
Assessing the goodness of approximation

• I would argue that finding a well-fitting model in IRT is harder than in FA
 o In IRT we model all moments (univariate, bivariate, trivariate, ..., n-variate)
 o In FA we only model univariate and bivariate moments

• If we reject the fitted model, how do we judge how close we are to the true and unknown model?
 o I.e., how do we judge the goodness of approximation of our model?
Bivariate RMSEA and full information RMSEA

- The Root Mean Squared Error of Approximation is the standard procedure for assessing goodness of approximation in SEM

- A RMSEA can be constructed based on Pearson’s X^2 (RMSEA_n), M_2 (RMSEA$_2$), or any other statistic with known asymptotic distribution

- For members of the RMSEA$_r$ family

$$\varepsilon_r = \sqrt{\frac{\left(\pi_r^T - \pi_r^0\right)'C_r^0\left(\pi_r^T - \pi_r^0\right)_r}{df_r}}$$

$$\hat{\varepsilon}_r = \sqrt{\frac{M_r}{df_r}}$$

- RMSEA$_2$ will generally be larger than RMSEA$_n$ because M_2 is generally more powerful than X^2 and statistics with higher power have a higher M_r / df_r ratio.
Choice of cutoff values for RMSEA$_2$ and RMSEA$_n$ in binary IRT models

- A cut-off of RMSEA$_2 \leq 0.05$ separates unidimensional from two-dimensional models
- A cut-off RMSEA$_n \leq 0.03$ separates unidimensional from two-dimensional models
RMSEA\textsubscript{n}, RMSEA\textsubscript{2}, and RMSEA\textsubscript{ord}

• RMSEA\textsubscript{n} is based on X^2
 - There is a limit in the size of models for which X^2 can be computed
 - Its sampling distribution will only be well approximated in small models (just as the sampling distribution of X^2)
 - It is not possible to offer an overall cut-off as population values of RMSEA\textsubscript{n} depend on the number of variables and the number of categories
RMSEA\(_n\), RMSEA\(_2\), and RMSEA\(_{ord}\)

- RMSEA\(_2\) is based on \(M_2\)
 - It can be computed for larger models
 - Its sampling distribution can be well approximated in large models
 - One can obtain confidence intervals and a test of close fit
 - It is possible to offer an overall cut-off

- RMSEA\(_{ord}\) is based on \(M_{ord}\)
 - It can be computed for even larger models
 - Its sampling distribution can be well approximated in large models
 - One can obtain confidence intervals and a test of close fit BUT
 - It is not possible to offer an overall cut-off as population values of RMSEA\(_{ord}\) depend on the number of variables and the number of categories
Effect of the number of variables and categories on RMSEA$_2$ and RMSEA$_{ord}$

- RMSEA$_2$ adjusted by the number of categories is stable when misfit is small.
- RMSEA$_{ord}$ decreases as n and K increase.
 - It is easier to obtain a low RMSEA$_{ord}$ for large n and K.
Goodness of approximation when the model is large

- If the model is so large that RMSEA\(_2\) cannot be computed and we should not use RMSEA\(_{ord}\) because we cannot offer an overall cutoff, what do we do?

- The RMSEAs are ill designed to assess *pure* goodness of approximation
 - They cannot be interpreted substantively
 - They are a weighted sum of residuals divided by df

- The RMSEAs by construction mix goodness of approximation and model selection

- How can we measure pure goodness of approximation?

- We want to measure the magnitude of the misfit (effect size)
 - In substantively interpretable units
 - Such that we can offer an overall cut-off valid for any \(n\) and \(K\)
The Standardized Root Mean Squared Residual (SRMSR)

- A more appropriate name is the Squared Root Mean Residual Correlation
 - It is only valid for binary or ordinal data (just as the RMSEA\textsubscript{ord})

\[
SRMSR = \sqrt{\sum_{i<j} \frac{(r_{ij} - \hat{\rho}_{ij})^2}{n(n-1)/2}}
\]

(16)

- \(r_{ij}\) is just the product moment (Pearson) correlation and

\[
\hat{\rho}_{ij} = \frac{\hat{\kappa}_{ij} - \hat{\kappa}_i \hat{\kappa}_j}{\sqrt{\hat{\kappa}_{ii} - \hat{\kappa}_i^2} \sqrt{\hat{\kappa}_{jj} - \hat{\kappa}_j^2}}.
\]

(17)

where the means (\(\kappa_i\) and \(\kappa_j\)) and the cross-product \(\kappa_{ij}\) were given in (11) and (12), and \(\kappa_{ii}\) is

\[
\kappa_{ii} = E\left[Y_i^2\right] = 0^2 \times \Pr(Y_i = 0) + \ldots + (K_i - 1)^2 \times \Pr(Y_i = K_i - 1).
\]

(18)
Relationship between RMSEA\(_2\) and SRMR
Relationship between RMSEA$_2$ adjusted by the number of categories and SRMR
Proposal of cut-off values for assessing close fit in IRT

<table>
<thead>
<tr>
<th>criterion</th>
<th>RMSEA<sub>2</sub></th>
<th>SRMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>adequate fit</td>
<td>0.089</td>
<td>0.05</td>
</tr>
<tr>
<td>close fit</td>
<td>0.05</td>
<td>0.027</td>
</tr>
<tr>
<td>excellent fit</td>
<td>0.05 / (K – 1)</td>
<td>0.027 / (K – 1)</td>
</tr>
</tbody>
</table>

- Criteria for adequate fit and close fit are essentially identical to those proposed by Browne and Cudeck (1993) in the context of SEM.

- Criteria for excellent and close fit are equal for binary data.

- It is possible (but cumbersome) to compute CIs and tests for the SRMR.
 - It is best used as a goodness of fit index.

- When used as a goodness of fit index, the SRMR can be computed for models of any size.
 - It only requires computing means and cross-products under the IRT model.
Goodness of fit statistics are only summary measures

• It is possible that the model fits well overall but that it fits very poorly some items
 o It is good practice to inspect item and item pairs statistics and to report the largest observed statistics

• If the model misfits we wish to locate the source of the misfit
Outline

• Introduction
• Overall goodness of fit testing
• Two examples
• Assessing goodness of approximation
• Fine-tuning the model: identifying misfitting items
Identifying misfitting items in IRT

• One could compute Pearson’s statistic for every item and pair of items.

• For a pair of items we can write

\[X^2_{ij} = N \left(p_{ij} - \hat{\pi}_{ij} \right)' \hat{D}^{-1}_{ij} \left(p_{ij} - \hat{\pi}_{ij} \right) \]

where \(p_{ij}, \hat{\pi}_{ij} \) are vectors of dimension \(K^2 \).

○ Unfortunately \(X^2 \) does not follow an asymptotic chi-square distribution when applied to a subtable.

• As in the case of the overall goodness of fit statistics we can use

\[M_{ij} = N \left(p_{ij} - \hat{\pi}_{ij} \right)' \hat{C}_{ij} \left(p_{ij} - \hat{\pi}_{ij} \right), \quad \hat{C}_{ij} = \hat{D}_{ij}^{-1} - \hat{D}_{ij}^{-1} \hat{\Lambda}_{ij} \left(\hat{\Lambda}_{ij}' \hat{D}_{ij}^{-1} \hat{\Lambda}_{ij} \right)^{-1} \hat{\Lambda}_{ij}' \hat{D}_{ij}^{-1} \]

\[R_{ij} = N \left(p_{ij} - \hat{\pi}_{ij} \right)' \hat{\Sigma}_{ij}^+ \left(p_{ij} - \hat{\pi}_{ij} \right) \]

or a mean and variance corrected \(X^2_{ij} \)
Identifying misfitting items in IRT

- Alternatively, we could use z statistics for the residual cross-products

\[z_{ord} = \frac{k_{ij} - \hat{\kappa}_{ij}}{SE(k_{ij} - \hat{\kappa}_{ij})} = \frac{k_{ij} - \hat{\kappa}_{ij}}{\sqrt{\hat{\sigma}_{ord}^2 / N}}. \]

(22)

- For all statistics (but \(M_{ij} \)) the (asymptotic) covariance matrix of the residuals for the pair of items is needed. This is, for multinomial ML,

\[\Sigma_{ij} = D_{ij} - \pi_{ij} \pi_{ij}' - \Delta_{ij} \mathcal{I}^{-1}_{(ij)} \Delta_{ij}'. \]

(23)

and for the z statistics we need

\[\hat{\sigma}_{ord}^2 = \mathbf{v}' \hat{\Sigma}_{ij} \mathbf{v}, \]

(24)

where \(\mathbf{v}' \) is the \(1 \times K^2 \) vector

\[\mathbf{v}' = (0 \times 0, 0 \times 1, \ldots 0 \times (K - 1), \ldots, (K - 1) \times 0, (K - 1) \times 1, \ldots, (K - 1) \times (K - 1)). \]

(25)
Identifying misfitting items in IRT: Type I errors for a 2PL

- **X_{ij}^c**
- **\overline{X}_{ij}^2**
- **R_i**
- **z_i**

N = 300
- Pair (1, 2)
- Pair (1, 3)
- Pair (2, 3)

N = 1000
- Pair (1, 2)
- Pair (1, 3)
- Pair (2, 3)

Horizontal axis: Nominal α level
Vertical axis: Empirical rejection rate

- **$-$** Observed information
- **$+$** Cross-product information
- **$-$** No information
- **$-$** Matched rejection rates
Identifying misfitting items: Power for Samejima’s model

\[M_i \]

\[\bar{X}_i \]

\[R_i \]

\[z_{rd} \]

2-dim same factor

2-dim different factors

Mixture

Guessing

Horizontal axis: Magnitude of slopes

Vertical axis: Rejection rate at \(\alpha = 0.05 \)

- Observed information
- Cross-product information
- No information
- Rejection rate = 0.05
Assessing the source of misfit in the PROMIS anxiety data

<table>
<thead>
<tr>
<th>Item</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>6</th>
<th>3</th>
<th>4</th>
<th>7</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>-3.48</td>
<td>-3.57</td>
<td>-1.68</td>
<td>-1.54</td>
<td>-0.94</td>
<td>-1.98</td>
<td>1.88</td>
</tr>
<tr>
<td>2</td>
<td>-0.029</td>
<td></td>
<td>0.50</td>
<td>-2.10</td>
<td>-3.21</td>
<td>1.53</td>
<td>-0.87</td>
<td>1.67</td>
</tr>
<tr>
<td>5</td>
<td>-0.021</td>
<td>0.018</td>
<td></td>
<td>-2.41</td>
<td>-3.27</td>
<td>-1.37</td>
<td>-1.57</td>
<td>1.81</td>
</tr>
<tr>
<td>6</td>
<td>0.002</td>
<td>-0.016</td>
<td>-0.013</td>
<td></td>
<td>-0.79</td>
<td>-2.03</td>
<td>0.24</td>
<td>1.32</td>
</tr>
<tr>
<td>3</td>
<td>0.007</td>
<td>-0.031</td>
<td>-0.023</td>
<td>0.004</td>
<td></td>
<td>-2.20</td>
<td>-0.54</td>
<td>1.65</td>
</tr>
<tr>
<td>4</td>
<td>0.001</td>
<td>0.036</td>
<td>-0.008</td>
<td>-0.021</td>
<td>-0.020</td>
<td></td>
<td>-1.26</td>
<td>1.33</td>
</tr>
<tr>
<td>7</td>
<td>-0.012</td>
<td>-0.012</td>
<td>-0.018</td>
<td>0.003</td>
<td>-0.005</td>
<td>-0.016</td>
<td></td>
<td>0.92</td>
</tr>
</tbody>
</table>

- A 90% CI for RMSEA$_2$ is (0.029; 0.040); SRMSR = 0.016.
 - The model provides a close fit to the data
- z_{ord} statistics are displayed above the diagonal, residual correlations below the diagonal.
- z_{ord} statistics significant at the 5% level with a Bonferroni adjustment have been boldfaced.
Outline

• Introduction
• Overall goodness of fit testing
• Two examples
• Assessing goodness of approximation
• Fine-tuning the model: identifying misfitting items
• Final remarks
Recommendations

• For overall goodness of fit use M_2
 o Mean and variance diagonally weighted statistic may be more powerful to detect the presence of mixtures and guessing
 ▪ It requires the estimation of the covariance matrix of the item parameter estimates using the observed information matrix

• For assessing the magnitude of the misfit use RMSR (only with binary or ordinal data)

• For assessing goodness of approximation (taking into account model parsimony) use the RMSEA$_2$
 o Cut-off values for the RMSR and RMSEA$_2$ are available
Recommendations

• Report largest statistics for item pairs
 o Residual correlations and z statistics for binary and ordinal data
 o Mean and variance adjusted X^2 statistics for polytomous nominal data
 ▪ They require the estimation of the covariance matrix of the item parameter estimates
Concluding remarks

- Model-data assessment in IRT can now be performed as well (if not better) than in SEM

- Most often, our models will be misspecified to some extent
 - Research is needed to investigate the practical implications of different levels of misspecification

- The theory presented here is completely general
 - Applicable to any model for multivariate discrete data (e.g., cognitive diagnostic models)

- Better IRT models (or other measurement models) are needed
 - Particularly for polytomous data