Development and Psychometric Properties of a New Generic Questionnaire Measuring Satisfaction with Treatment with Medicines: The SATMED-Q

Ruiz MA1, Pardo A1, Rejas J2, Soto J1, Villasante F3, Aranguren J4
1 Department of Methodology, School of Psychology, Universidad Autónoma de Madrid, Spain
2 Department of Health Outcomes Research, Medical Unit, Pfizer España, Madrid, Spain
3 Primary Care Health Center of Orcasitas, Madrid, Spain
4 Primary Care Health Clinic, Clínica Madrilen, Fuenteblanca, Spain

RESULTS (Cont.)

Unidimensional scales were reliable (Table 3), and observed correlations allow computation of a summary score (Cronbach's α = 0.890). Test-Retest correlation after 3 days (SD=1 022) was high (r=0.95) and significant (p<0.001) showing good measure stability. No difference in the overall mean between measurements was observed (p=0.712).

In the reduction stage, the side effects interference dimension showed a floor effect but was kept in the questionnaire for drug surveillance reasons. With the psychometric sample this effect was less accentuated. Similar results have been reported for other questionnaires.

Differences between tolerability and effectiveness groups were found depending on dimension and whether the clinician or the patient informs. The dimension of undesired side-effects was the most sensitive to differences in tolerability and the efficacy dimension the most sensitive for differences in effectiveness. Comparing tolerability groups, a significant interaction with dimensions was observed (p<0.001). All groups differed in the side-effects dimensions (p<0.001), except between Acceptable and Good. In the remaining dimensions, the Excellent tolerability group differed from the remaining groups (p<0.025), except in medical care.

Figure 2. SATMED-Q dimension and overall Mean score by pathology.

Unidimensional scales were reliable (Table 3), and observed correlations allow computation of a summary score (Cronbach's α = 0.890). Test-Retest correlation after 3 days (SD=1 022) was high (r=0.95) and significant (p<0.001) showing good measure stability. No difference in the overall mean between measurements was observed (p=0.712).

In the reduction stage, the side effects interference dimension showed a floor effect but was kept in the questionnaire for drug surveillance reasons. With the psychometric sample this effect was less accentuated. Similar results have been reported for other questionnaires.

Differences between tolerability and effectiveness groups were found depending on dimension and whether the clinician or the patient informs. The dimension of undesired side-effects was the most sensitive to differences in tolerability and the efficacy dimension the most sensitive for differences in effectiveness. Comparing tolerability groups, a significant interaction with dimensions was observed (p<0.001). All groups differed in the side-effects dimensions (p<0.001), except between Acceptable and Good. In the remaining dimensions, the Excellent tolerability group differed from the remaining groups (p<0.025), except in medical care.

Figure 2. SATMED-Q dimension and overall Mean score by pathology.

Unidimensional scales were reliable (Table 3), and observed correlations allow computation of a summary score (Cronbach's α = 0.890). Test-Retest correlation after 3 days (SD=1 022) was high (r=0.95) and significant (p<0.001) showing good measure stability. No difference in the overall mean between measurements was observed (p=0.712).

In the reduction stage, the side effects interference dimension showed a floor effect but was kept in the questionnaire for drug surveillance reasons. With the psychometric sample this effect was less accentuated. Similar results have been reported for other questionnaires.

Differences between tolerability and effectiveness groups were found depending on dimension and whether the clinician or the patient informs. The dimension of undesired side-effects was the most sensitive to differences in tolerability and the efficacy dimension the most sensitive for differences in effectiveness. Comparing tolerability groups, a significant interaction with dimensions was observed (p<0.001). All groups differed in the side-effects dimensions (p<0.001), except between Acceptable and Good. In the remaining dimensions, the Excellent tolerability group differed from the remaining groups (p<0.025), except in medical care.

Figure 2. SATMED-Q dimension and overall Mean score by pathology.

Unidimensional scales were reliable (Table 3), and observed correlations allow computation of a summary score (Cronbach's α = 0.890). Test-Retest correlation after 3 days (SD=1 022) was high (r=0.95) and significant (p<0.001) showing good measure stability. No difference in the overall mean between measurements was observed (p=0.712).

In the reduction stage, the side effects interference dimension showed a floor effect but was kept in the questionnaire for drug surveillance reasons. With the psychometric sample this effect was less accentuated. Similar results have been reported for other questionnaires.

Differences between tolerability and effectiveness groups were found depending on dimension and whether the clinician or the patient informs. The dimension of undesired side-effects was the most sensitive to differences in tolerability and the efficacy dimension the most sensitive for differences in effectiveness. Comparing tolerability groups, a significant interaction with dimensions was observed (p<0.001). All groups differed in the side-effects dimensions (p<0.001), except between Acceptable and Good. In the remaining dimensions, the Excellent tolerability group differed from the remaining groups (p<0.025), except in medical care.

Figure 2. SATMED-Q dimension and overall Mean score by pathology.

Unidimensional scales were reliable (Table 3), and observed correlations allow computation of a summary score (Cronbach's α = 0.890). Test-Retest correlation after 3 days (SD=1 022) was high (r=0.95) and significant (p<0.001) showing good measure stability. No difference in the overall mean between measurements was observed (p=0.712).

In the reduction stage, the side effects interference dimension showed a floor effect but was kept in the questionnaire for drug surveillance reasons. With the psychometric sample this effect was less accentuated. Similar results have been reported for other questionnaires.

Differences between tolerability and effectiveness groups were found depending on dimension and whether the clinician or the patient informs. The dimension of undesired side-effects was the most sensitive to differences in tolerability and the efficacy dimension the most sensitive for differences in effectiveness. Comparing tolerability groups, a significant interaction with dimensions was observed (p<0.001). All groups differed in the side-effects dimensions (p<0.001), except between Acceptable and Good. In the remaining dimensions, the Excellent tolerability group differed from the remaining groups (p<0.025), except in medical care.

Figure 2. SATMED-Q dimension and overall Mean score by pathology.

Unidimensional scales were reliable (Table 3), and observed correlations allow computation of a summary score (Cronbach's α = 0.890). Test-Retest correlation after 3 days (SD=1 022) was high (r=0.95) and significant (p<0.001) showing good measure stability. No difference in the overall mean between measurements was observed (p=0.712).

In the reduction stage, the side effects interference dimension showed a floor effect but was kept in the questionnaire for drug surveillance reasons. With the psychometric sample this effect was less accentuated. Similar results have been reported for other questionnaires.

Differences between tolerability and effectiveness groups were found depending on dimension and whether the clinician or the patient informs. The dimension of undesired side-effects was the most sensitive to differences in tolerability and the efficacy dimension the most sensitive for differences in effectiveness. Comparing tolerability groups, a significant interaction with dimensions was observed (p<0.001). All groups differed in the side-effects dimensions (p<0.001), except between Acceptable and Good. In the remaining dimensions, the Excellent tolerability group differed from the remaining groups (p<0.025), except in medical care.

Figure 2. SATMED-Q dimension and overall Mean score by pathology.

Unidimensional scales were reliable (Table 3), and observed correlations allow computation of a summary score (Cronbach's α = 0.890). Test-Retest correlation after 3 days (SD=1 022) was high (r=0.95) and significant (p<0.001) showing good measure stability. No difference in the overall mean between measurements was observed (p=0.712).

In the reduction stage, the side effects interference dimension showed a floor effect but was kept in the questionnaire for drug surveillance reasons. With the psychometric sample this effect was less accentuated. Similar results have been reported for other questionnaires.

Differences between tolerability and effectiveness groups were found depending on dimension and whether the clinician or the patient informs. The dimension of undesired side-effects was the most sensitive to differences in tolerability and the efficacy dimension the most sensitive for differences in effectiveness. Comparing tolerability groups, a significant interaction with dimensions was observed (p<0.001). All groups differed in the side-effects dimensions (p<0.001), except between Acceptable and Good. In the remaining dimensions, the Excellent tolerability group differed from the remaining groups (p<0.025), except in medical care.

Figure 2. SATMED-Q dimension and overall Mean score by pathology.

Unidimensional scales were reliable (Table 3), and observed correlations allow computation of a summary score (Cronbach's α = 0.890). Test-Retest correlation after 3 days (SD=1 022) was high (r=0.95) and significant (p<0.001) showing good measure stability. No difference in the overall mean between measurements was observed (p=0.712).

In the reduction stage, the side effects interference dimension showed a floor effect but was kept in the questionnaire for drug surveillance reasons. With the psychometric sample this effect was less accentuated. Similar results have been reported for other questionnaires.

Differences between tolerability and effectiveness groups were found depending on dimension and whether the clinician or the patient informs. The dimension of undesired side-effects was the most sensitive to differences in tolerability and the efficacy dimension the most sensitive for differences in effectiveness. Comparing tolerability groups, a significant interaction with dimensions was observed (p<0.001). All groups differed in the side-effects dimensions (p<0.001), except between Acceptable and Good. In the remaining dimensions, the Excellent tolerability group differed from the remaining groups (p<0.025), except in medical care.