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We show that a single quantum emitter can efficiently couple to the tunable plasmons of a highly doped
single-wall carbon nanotube (SWCNT). Plasmons in these quasi-one-dimensional carbon structures exhibit
deep subwavelength confinement that pushes the coupling efficiency close to 100% over a very broad
spectral range. This phenomenon takes place for distances and tube diameters comprising the nanometer
and micrometer scales. In particular, we find a β factor ≈1 for QEs placed 1–100 nm away from SWCNTs
that are just a few nanometers in diameter, while the corresponding Purcell factor exceeds 106.
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Achieving an efficient coupling between a single quan-
tum emitter (QE) and the surface plasmons (SPs) supported
by metallic nanostructures has become a popular subject of
research due to its potential application to quantum-optics
[1–3] and sensing [4,5]. This efficient coupling lies at the
heart of several surface-based ultrasensitive optical analysis
techniques, which rely on the plasmon-driven enhancement
of Raman scattering [4] and infrared absorption [5].
Remarkably, the localized SPs of a metal nanoparticle
can enormously modify the spontaneous decay of a
neighboring excited molecule [6–8], while propagating
SPs can produce similar effects over a broadband spectral
range. Reducing the dimensionality of the plasmonic
structure from 2D (metal surfaces) to 1D (thin wires)
enables better control over the coupling, which can be
engineered to affect just a single SP [2]. Additionally, the
SPs of 1D geometries are well suited to act as mediators in
the interaction between several QEs placed in close
proximity to a plasmonic waveguide [9–12], thus sug-
gesting the combination of these tools to design large-scale
quantum-optics integrated devices, which could benefit
from the plasmon robustness against environmental fluc-
tuations to operate under ambient conditions.
The recent emergence of graphene as a plasmonic

material [13–15] has introduced an additional knob to
improve the performance of QE-SP coupling. The large
electrical tunability and high degree of confinement recently
measured in graphene plasmons [16–20] has stimulated
suggestions for their use in tunable plasmonic circuitry and
metamaterials [21], as well as for the achievement of
quantum strong coupling and efficient interaction with
QEs [22,23] with superior performance compared with
conventional plasmonic metals. Although these plasmons

have been so far observed only at midinfrared and lower
frequencies, their extension towards the more technologi-
cally appealing spectral ranges of the visible and near-
infrared has been argued to be attainable [24], particularly
by reducing the size of the structures to scales of a few
nanometers, which are commensurable with existing
graphene-related structures such as aromatic molecules
[25] and carbon nanotubes. In particular, nanotubes of tens
of nanometers in diameter have been recently suggested as
suitable elements for plasmon circuitry [26]. It should be
noted that SWCNTs, like other carbon allotropes, exhibit
UV plasmons that have been well characterized in the past
[27]. However, those plasmons are much lossier, and
therefore less prone to efficiently couple to QEs, than the
tunable lower-energy plasmons on which we concentrate
here, which only exist in doped structures and are predicted
to display similar electrical tunability as graphene.
In this Letter, we show that quantum emitters can

strongly couple to the electrically tunable plasmons of
doped SWCNTs, reaching light-matter interaction levels
that go even beyond those of planar graphene. From the
THz to the midinfrared frequency range, the Purcell factor
(i.e., the decay rate near the material, normalized to the
decay rate in free space) is increased by nearly 3 orders of
magnitude when reducing the dimensionality of the carbon
nanostructure from 2D (graphene) to quasi-1D (nanotubes).
More importantly, the coupling efficiency of the QE to the
SPs supported by SWCNTs (i.e., the fraction of decay into
SPs, also known as β factor) reaches values nearing 100%
over a very broad range of QE-SWCNT distances and
QE/SP frequencies. At higher frequencies, Purcell and beta
factors are similar for emitters close to either graphene or a
SWCNT; even in this case the use of SWCNT opens
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additional possibilities because it presents a favorable
dependence of the interaction on the distance compared
with planar materials.
Figure 1 depicts the system under study: a single QE

placed at a distance ρ from the axis of a SWCNTof radiusR.
The emission properties of the QE are determined by its
transition frequencyω and dipolemomentp.We assume that
R is sufficiently large as to neglect curvature effects (i.e., the
discreteness of the electronic bands, as well as features near
the Dirac point associated with the tube chirality and finite
radius). A recent study [24] indicates that this approximation
works well and tube chirality effects can be neglected in the
description of transversal plasmons for R > 1 nm under
the doping conditions here considered (see below) down to
the near-infrared spectral region, although narrower nano-
tubes require a more fundamental level of description
[28,29]. SWCNTs have been synthesized in this size range
[30] and their excitonic absorption bands well characterized
[31–33]. We thus model the SWCNT as a hollow tube with
the same surface conductivity σðωÞ as graphene doped with
the considered number of charge carriers per carbon atom.
This is convenient, as it allows us to readily compare 2D
graphene and 1D SWCNTs. From a more quantitative point
of view, our choice is justified in the Supplemental Material
[34], where we show that the computed extinction cross
section of SWCNT is very similar when using the local limit
of the random-phase approximation (RPA) for σðωÞ in
graphene [39,40] and the numerically computed RPA for
the SWCNT [38]. In all calculations presented in this paper,
we use realistic values for the chemical potential μc ¼ 1 eV,
corresponding to 1 charge carrier per every 52 carbon atoms,
and the plasmon relaxation time τ ¼ 1 ps, and consider that
the temperature is T ¼ 300 K.A set of calculations forEF ¼
0.5 eV can be found in the Supplemental Material [34],
showing the robustness of the effects predicted in this work.

Importantly, SPs within this model are insensitive to the sign
of the doping, and the relative comparison between 2D and
1D geometry is independent of the choice of τ. However,
the high Purcell factor here predicted (see below) is roughly
proportional to the assumed τ.
In this work we are most interested in situations in which

both R and ρ are small compared with the light wavelength
λ. Therefore, the electrostatic limit here outlined, which
leads to relatively affordable analytical expressions, pro-
vides a very accurate level of description, as shown below.
A comparison between results obtained with the electro-
static approach and a full electromagnetic formalism
(whose derivation is given in [34]) is presented in
Fig. 2, whereas both approaches give nearly identical
results on the scale of Figs. 3 and 4.
We start our analysis by considering the screened

interaction Wðr; r0;ωÞ, defined as the electric scalar poten-
tial created at the position r by an oscillating point charge
expð−iωtÞ placed at r0. Reciprocity implies thatWðr; r0;ωÞ
is symmetric with respect to the exchange of r and r0.
Also, it is convenient to decompose Wðr; r0;ωÞ ¼
1=jr − r0j þWindðr; r0;ωÞ as the sum of bare and induced
interactions. This quantity allows us to obtain the plasmon
characteristics, as well as the decay rate of a neighboring
QE. Direct solution of Poisson’s equation for both r and r0
placed outside the tube yields [34]

Windðr;r0;ωÞ¼ 2

π

X∞

m¼0

ð2−δm0Þcos½mðφ−φ0Þ�

×
Z

∞

0

dkrmðkÞcos½kðz−z0Þ�KmðkρÞKmðkρ0Þ;

ð1Þ

where we use cylindrical coordinates r ¼ ðρ; z;φÞ,

rmðkÞ ¼
−I2mðkRÞΔm

1þ ImðkRÞKmðkRÞΔm
ð2Þ

is the reflection coefficient for cylindrical waves, Δm ¼
ð4πiσ=ωRÞðm2 þ k2R2Þ, and Im and Km are modified
Bessel functions. The integral in Eq. (1) is performed over
the wave vector k parallel to the axis of the nanotube, while
the sum runs over components of fixed azimuthal angular
momentum number m.
Plasmon resonances are signaled by their strong

response for a given external perturbation, or equivalently,
by the poles of rmðkÞ. Here we should note that sign
cancellations due to the expðimφÞ modulation of the
induced charge along the azimuthal direction of the tube
surface render the contribution ofm ≠ 0modes small if ρ is
larger than the radius R. We thus concentrate on the
dominant m ¼ 0 plasmon band, whose complex wave
vector kp is found as a function of frequency ω from the
solution to the transcendental equation

^ 

^ 

z ^ 

^

z ẑ

FIG. 1 (color online). Sketch of the system under study. We
consider a QE placed at a distance ρ − R from the surface of a
SWCNTof radius R. Three orthogonal orientations of the emitter
dipole p are considered, as shown by the red arrows.
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ω

σðωÞ ¼ −4πiRk2pI0ðkpRÞK0ðkpRÞ:

For ℏω ≪ 2EF, when the conductivity is dominated
by the intraband (Drude) term, and in the limit
τ → ∞, this transcendental equation becomes ω2 ¼
ð4e2EF=ℏ2ÞI0ðkpRÞK0ðkpRÞk2pR, which agrees with pre-
vious studies [41–43]. Here we consider the full RPA
expression for the conductivity, including losses and
interband transitions. In Fig. 2(a) we show Refkpg as a
function of light wavelength λ for SWCNTs of radius R in
the 2 nm–100 μm range. This magnitude is normalized to
the free-space light wave vector k0 ¼ 2π=λ, so that the plot
directly illustrates the degree of spatial confinement of the
plasmon, whose radial electric field is proportional to
K1ðkpρÞ. Whereas the case of small radius corresponds

to realistic SWCNTs, we also consider very large R in order
to deal with graphene-coated cylinders. In this way, this
figure illustrates the evolution from small tubes to planar
graphene with increasing R. For comparison, we further
plot the dispersion relation of the SPs supported by a
graphene sheet. As discussed above, the electrostatic limit
yields very accurate results for nanotubes of small radius
(R < 100 nm), and also for larger radius at short wave-
lengths. The results show that Refkpg is virtually the same
for graphene and carbon nanotubes for light wavelengths

FIG. 2 (color online). Propagation characteristics of plasmons
supported by SWCNTs and the limit towards graphene. (a) Real
part of the plasmon wave vector kp as a function of the
wavelength λ of free-space light oscillating at the same frequency
for different values of the tube radius R. The plasmon wave vector
is normalized to the light wave vector k0 ¼ 2π=λ. The limit of 2D
graphene (dashed curve) is smoothly approached at large R’s.
(b) The corresponding figure of merit (FOM) Refkpg=Imfkpg of
the guided plasmons studied in (a). Full electromagnetic theory
(solid curves) is compared with the electrostatic limit (dotted
curves) in both panels.

FIG. 3 (color online). Purcell factor. The main panel shows the
Purcell factor [Eq. (4)] as a function of the distance ρ − R from
the QE to the surface of a SWCNTof radius R ¼ 2 nm for several
values of the free-space emission wavelength λ and all three
possible QE dipole orientations (see Fig. 1): radial (continuous
curves), longitudinal (dashed curves), and azimuthal (dotted
curves). The inset shows the corresponding Purcell factor in
graphene for the same wavelengths and a dipole orientation
perpendicular to the carbon plane.
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FIG. 4 (color online). β factor. Fraction of decay into SPs (β
factor) from radially (∥ρ) and longitudinally (∥z) oriented QEs
under the same conditions as in Fig. 3. The inset shows the β
factor for a point dipole perpendicularly oriented to a 2D
graphene sheet.
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λ≲ 1.5 μm, independently of its radius. However, for
λ > 1.5 μm, plasmons propagating along carbon nanotubes
are more confined (larger Refkpg) than those supported by
graphene, and their confinement increases with decreasing
R. This suggests that SWCNTs are better suited to produce
enhanced coupling with QEs in this spectral range.
The ratio between the real and imaginary parts of kp is

also an important magnitude, typically used as a figure of
merit (FOM=Refkpg=Imfkpg) for evaluating the plasmon
attenuation length of SPs. This FOM is plotted in Fig. 2(b)
as a function of λ for SWCNTs of different radius R.
Remarkably, these SPs possess a larger FOM than those of
graphene for spectral and geometrical-parameter ranges in
which they also exhibit tighter confinement, as noted above
(see 1.5 μm < λ < 100 μm region). These characteristics
are very beneficial for the design of efficient coupling
schemes between several QEs mediated by SPs.
A convenient way of assessing the strength of the QE-SP

coupling consists in analyzing the rate of spontaneous
emission, Γ. In particular, the Purcell factor P ¼ Γ=Γ0,
where Γ0 is the decay rate in vacuum, is directly related to
the ratio of the plasmon resonance quality factor to the
mode volume. For a point dipole p located at r, it can be
calculated as [44]

P ¼ 1þ 3

2p2k30
Imfp ·EindðrÞg; ð3Þ

where EindðrÞ is the field induced by the dipole at its own
position, which can be in turn obtained from the screened

interaction as EindðrÞ ¼ − ~∇r½ðp · ~∇r0 ÞWindðr; r0;ωÞ�jr0¼r.
Using Eq. (1) and specifying for dipoles oriented along
the three orthogonal directions shown in Fig. 1, we find

Pρ ¼ 1 −
3

πk30

X∞

m¼0

bm

Z
∞

0

dkk2½K0
mðkρÞ�2ImfrmðkÞg; ð4aÞ

Pz ¼ 1 −
3

πk30

X∞

m¼0

bm

Z
∞

0

dkk2K2
mðkρÞImfrmðkÞg; ð4bÞ

Pφ ¼ 1 −
6

πk30

X∞

m¼1

cm

Z
∞

0

dkK2
mðkρÞImfrmðkÞg; ð4cÞ

where K0
mðzÞ ¼ dKmðzÞ=dz, bm ¼ ð2 − δm0Þ, and cm ¼

m2=ρ2. Incidentally, this formalism can be easily adapted
to cope with QEs of non-negligible size compared with λ or
ρ simply by considering a more delocalized transition
current beyond the dipole approximation, leading to a
modified form of Eq. (3), which might be useful to account
for finite-size effects of infrared QEs [45].
In Fig. 3, we study the QE-SWCNT distance dependence

of Pρ, Pφ, and Pz for tubes of radius R ¼ 2 nm and for
several QE emission wavelengths λ in the 1.5–30 μm
range. The highest Purcell factor is observed for radial

orientation, as expected from the −1=ρ divergence of the
induced field at small separations, whereas the azimuthal
orientation renders poor coupling because it is only
contributed by m ≠ 0 SPs. The comparison between the
Purcell factor associated with either SWCNTs or graphene
(see inset to Fig. 3) for the corresponding optimal QE-
dipole orientations (Pρ for SWCNTs and perpendicular to
the 2D carbon sheet for graphene) is revealing. As soon as λ
is large enough so that the mode confinement is stronger in
1D SWCNTs than in 2D graphene, not only the Purcell
factor is higher for the nanotube, but their spatial depend-
ences are very different: whereas for graphene the Purcell
factor increases rapidly towards short separations due to the
dominant role of nonradiative channels, for SWCNTs this
increase is much less pronounced.
As mentioned above, a high coupling efficiency between

QEs and propagating SPs is a key ingredient to achieve
many of the proposed functionalities within the field of
waveguide QED. In Fig. 4 we show the β factor as a
function of the QE-SWCNT distance for several values of
the QE frequency. This magnitude can be evaluated by
calculating the contribution of the SP pole to the integrals
of Eq. (4). We evaluate the β factor near a SWCNTof radius
R ¼ 2 nm for the two optimal QE orientations, radial (ρ)
and longitudinal (z). For comparison, we plot in the inset
the evolution of the coupling efficiency for a QE near a
graphene layer, with its dipole oriented perpendicularly to
the 2D carbon plane. The coupling efficiency for SWCNTs
reaches 100% over a very broad range of distances: for the
optimal orientation (radial), β is close to 1 for distances
ranging from 1 nm to 1 μm (spanning 3 orders of
magnitude). Importantly, this high coupling efficiency
extends over a very broad range of frequencies and is
even larger in the very low frequency regime. Our results
imply that the quenching phenomenon (i.e., when the QE
emission is dominated by nonradiative decay channels)
only appears at very short distances (<1 nm) for QEs
coupled to SWCNTs. In opposition to other metallic
systems, SWCNTs present the crucial advantage of not
requiring a spacer to avoid quenching of QEs at small
separations. We attribute this reduction of quenching to the
very small quantity of material that binds the EM fields to
the carbon nanotube. In contrast, in graphene a high
coupling efficiency is only observed within a much
narrower range of distances, and quenching shows up at
distances below ∼10 nm even for midinfrared frequencies
(see inset of Fig. 4).
The strong interaction here predicted between QEs

and the plasmons of SWCNTs opens new possibilities to
implement waveguide QED schemes. It is worth noting that
electrical contacts between gates and carbon nanotubes
have been extensively studied for their potential as
nanoelectronics elements, thus facilitating the design of
practical electrical doping schemes. This combination of
classical electrical tunability and efficient coupling with
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QEs constitutes a powerful platform for the investigation of
fundamental quantum physics and the design of devices
capable of processing information encoded in the states of
the QEs.
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