Descripción de los Estudios

El objetivo central del título de Grado en Ingeniería Informática es formar profesionales capaces de desarrollar sistemas informáticos que realicen tareas o resuelvan problemas de manera correcta, eficiente y robusta, para satisfacer una serie de necesidades y requisitos, cumpliendo restricciones de coste, esfuerzo y tiempo de desarrollo.
La informática es importante por tres razones principales. En primer término, la informática ha demostrado que puede dar valor agregado a los bienes y servicios de una organización porque, permite transformarlos o permite mejorar la coordinación de las actividades relacionadas con el proceso de generación de éstos. En segundo lugar, la informática puede ayudar a transformar la manera en que una organización compite, afectando las fuerzas que controlan la competencia en una industria. Gracias a la informática, algunas organizaciones han podido crear barreras de entrada, reducir la amenaza de productos o servicios sustitutivos, cambiar su forma de competir de costos por diferenciación o por especialización y aumentar su poder con respecto a los proveedores o a los compradores. Por último, y posiblemente ésta sea la razón más importante, la informática puede ayudar a reinventar la manera de operar de una organización. La mayoría de los procesos organizativos actúan de acuerdo con reglas obsoletas y no toman en cuenta las ventajas que proporcionan las tecnologías de información. Las bases de datos compartidas que permiten tener información accesible en diferentes puntos en forma simultánea, el uso de los sistemas expertos para representar y utilizar el conocimiento y el uso de redes para intercambiar información, son solamente algunas de las nuevas tecnologías que nos permiten rediseñar la manera de operar de las organizaciones.
A las razones anteriormente expuestas, habría que agregar otras muchas relacionadas con el potencial que brindan estas tecnologías para modificar prácticamente todas nuestras actividades. Por ejemplo, la utilización de diversas herramientas de carácter tecnologico, informativo, evaluativo y de contenido, integradas y aplicadas con el fin de complementar los procesos de comunicación y enseñanza (e-learning). Por otro lado, el uso que han tenido las tecnologías de información para ahorrar energía y recursos naturales y para controlar la generación de desperdicios, resaltan la importancia de esta disciplina en la conservación de nuestro medio ambiente.

Este folleto tiene carácter meramente informativo, por lo que no podrá utilizarse como base de ningún recurso.

TIPO DE ASIGNATURA	ECTS
Formación básica	60
Obligatorias	126
Optativas	42
Trabajo de fin de Grado	12
Total	240

Perfil Profesional

Cinco sectores de actividad concentran la mayoría de la oferta de empleo para jóvenes cualificados: informática y telecomunicaciones, consultoría y auditoria, ingenieríatecnología, entidades financieras, y servicios.

Más de la mitad de las empresas ofrecen puestos para Ingenieros en Informática, dado que las nuevas tecnologías se han incorporado a todos los aspectos de la vida empresarial. De esta forma, los titulados pueden elegir entre desarrollar labores de investigación y desarrollo de la informática en sí misma, o incorporando soluciones técnicas en empresas de todos los ámbitos.

Por ello, los graduados en Ingeniería Informática podrán emplearse en muy distintos sectores, destacando:

- Investigación, desarrollo e innovación en sistemas informáticos.
- Consultoría y desarrollo de soluciones.
- Diseño y mantenimiento de hardware/software para empresas.

Inserción Laboral

En los últimos años, la Ingeniería Informática se ha encontrado siempre entre las diez profesiones más demandadas por las empresas y, previsiblemente, esta situación se mantendrá en los próximos años, dada la informatización de las mismas en todos los campos. Por ello, los graduados en Ingeniería Informática encontrarán una posición envidiable para su inserción laboral.

Plan de Estudios

PRIMER CURSO

ASIGNATURA	ECTS
ÁLGEBRA	6
CÁLCULO I	6
FUNDAMENTOS DE COMPUTADORES	6
PROGRAMACIÓN I	6
SEMINARIO-TALLER DE INFORMÁTICA	6
CALCULO II	6
ESTRUCTURA DE COMPUTADORES	6
PROGRAMACIÓN II	6
ELECTROMAGNETISMO	6
PROYECTO DE PROGRAMACIÓN	60
Total Créditos curso	

SEGUNDO CURSO

ASIGNATURA	ECTS
ESTRUCTURAS DISCRETASY LÓGICA	6
CIRCUITOS ELECTRÓNICOS	6
ESTRUCTURAS DE DATOS	6
ANALISIS DE ALGORITMOS	6
COMUNICACIÓN ORAL, ESCRITAY EN RED	6
PROBABILIDADY ESTADİSTICA	6
SISTEMAS BASADOS EN MICROPROCESADORES	6
SISTEMAS OPERATIVOS	6
ANÁLISIS YISENO DE SOFTWARE	6
PROYECTO DE ANANLISY DISENO DE SOFTWARE	6
Total créditos curso	60
TERCER CURSO	
ASIGNATURA	

ASIGNATURA	ECTS
ARQUITECTURA DE COMPUTADORES	6
REDES DE COMUNICACIONES I	6
SISTEMAS INFORMÁTICOS I	6
PROYECTO DE SISTEMAS INFORMÁTICOS	3
AUTÓMATASY LENGUAJES	6
PROYECTO DE AUTOMATASY LENGUAJES	3
INTELIGENCIA ARTIFICIAL	6
REDES DE COMUNICACIONES II	6
SISTEMAS INFORMÁTICOS II	6
INGENIERÍA DEL SOFTWARE	6
PROYECTO DE INGENIERÍA DEL SOFTWARE	6
Total créditos curso	60

CUARTO CURSO
ASIGNATURA

ASIGNATURA	ECTS
ORGANIZACION DE EMPRESASTECNOLÓGICAS	6
TRABAJO FIN DE GRADO	12
CRÉDITOS OPTATIVOS	42
Total créditos curso	60

vidersievicloudor inconputing fitilit

Se cursarán 42 ECTS de asignaturas optativas, que proporcionarán formación en aspectos avanzados de modelos, métodos y sistemas, procedentes de la vanguardia en ingeniería informática.
Las materias optativas se organizarán en ITINERARIOS como, por ejemplo:
ARQUITECTURAY REDES DE ORDENADORES
SISTEMAS INFORMAATICOS
INTELIGENCIA ARTIFICIAL
PROCESAMIENTO DIGITAL DE LA SEÑAL

¡QUÉ ES EL ECTS?
Un ECTS equivale a 25-30 horas totales de trabajo del estudiante (incluyendo todas las actividades: clases teóricas y prácticas, trabajos individuales o en grupo, tiempo de estudio...), estimándose el tiempo previsible en que se espera que un estudiante medio obtenga los resultados de aprendizaje requeridos.

Capacidades que adquirirá el Estudiante del Grado en Ingeniería Informática

Junto con las capacidades interpersonales, de comunicación, organización de proyectos y liderazgo, comunes a cualquier Grado en Ingeniería, los graduados en Ingeniería Informática adquirirán competencias técnicas en las siguientes áreas:

- Conocimiento de los fundamentos matemáticos y físicos. - Comprensión de los dispositivos electrónicos y los sistemas digitales, para aplicar las estrategias de diseño de éstos.
- Conocimiento de la evolución de las arquitecturas y arquitecturas paralelas de los computadores, microprocesadores, memorias, entrada/salida. - Capacidad para utilizar los sistemas operativos más usuales, así como conocimientos de su diseño e implementación.
- Capacidad para el análisis y diseño de sistemas informáticos, sistemas distribuidos y redes de ordenadores. - Capacidad de diseñar e implementar programas de ordenador para resolver problemas, comprendiendo su idoneidad, limitaciones y complejidad, para la elección de los mejores algoritmos.
- Conocimiento y comprensión de las tareas a realizar durante el ciclo de vida del software, el análisis de los requisitos, diseño e implementación, la planificación de pruebas y el mantenimiento de la aplicación resultante.
- Capacidad para aplicar técnicas de gestión de proyectos que aseguren la finalización del mismo en el tiempo, coste y esfuerzos previstos.
- Conocimiento sobre las labores desempeñadas por el ingeniero informático y su papel como innovador en la sociedad.

