

Code: 32446

Institution: Escuela Politécnica Superior

Degree: Master's program in Research and Innovation in Information and

Communications Technologies (I²-ICT)

Level: Master

Type: Elective [biometric security and surveillance]

ECTS: 6

COURSE GUIDE: Video Analysis Techniques for Surveillance (VATS)

Academic year: 2017-2018

Program: Master's program in Research and Innovation in Information and

Communications Technologies (I²-ICT)

Center: Escuela Politécnica Superior

University: Universidad Autónoma de Madrid

Last modified: 30/05/17

Status: Published 30/05/17

Code: 32446

Institution: Escuela Politécnica Superior

Degree: Master's program in Research and Innovation in Information and

Communications Technologies (I²-ICT)

Level: Master

Type: Elective [biometric security and surveillance]

ECTS: 6

1. ASIGNATURA / COURSE (ID)

Técnicas de Análisis de Secuencias de Vídeo para Videovigilancia Video Analysis Techniques for Surveillance (VATS)

1.1. Programa / Program

Máster Universitario en Investigación e Innovación en Tecnologías de la Información y las Comunicaciones (I²-TIC)

Master in Research and Innovation in Information and Communications Technologies (I²-ICT) [Officially certified]

1.2. Course code

32446

1.3. Course areas

Signal Theory and Communications

1.4. Tipo de asignatura / Course type

Optativa [itinerario: Seguridad Biométrica y Videovigilancia] Elective [itinerary: Biometric Security and Surveillance]

1.5. Semester

Second semester

1.6. Credits

6 ETCS

1.7. Language of instruction

The lectures, seminars and lecture notes are in English.

Code: 32446

Institution: Escuela Politécnica Superior

Degree: Master's program in Research and Innovation in Information and

Communications Technologies (I²-ICT)

Level: Master

Type: Elective [biometric security and surveillance]

ECTS: 6

1.8. Recommendations / Related subjects

Knowledge of digital image and video processing is useful to follow the course.

Related subjects are:

Machine Learning: theory and applications
[Aprendizaje Automático: teoría y aplicaciones]

 Applied Bayesian Methods [Métodos bayesianos aplicados]

 Biometrics [Biometría]

1.9. Lecturers

Add @uam.es to all email addresses below.

Lectures and labs:

Dr. Juan Carlos San Miguel Avedillo (Coordinator)

Departamento de Tecnología Electrónica y de las Comunicaciones

Escuela Politécnica Superior

Office: C-205 (C Building, 2nd floor)

Tel.: +34 914976996

e-mail: juancarlos.sanmiguel

Web: https://intranet.eps.uam.es/Publico/Ficha?ID_Persona=890

Attending hours for students: Please send an e-mail to set an appointment.

Dr. José M. Martínez Sánchez

Departamento de Tecnología Electrónica y de las Comunicaciones

Escuela Politécnica Superior

Office: C-201 (C Building, 2nd floor)

Tel.: +34 914972258 e-mail: josem.martinez

Web: https://intranet.eps.uam.es/Publico/Ficha?ID_Persona=863Attending

hours for students: Please send an e-mail to set an appointment

Code: 32446

Institution: Escuela Politécnica Superior

Degree: Master's program in Research and Innovation in Information and

Communications Technologies (I²-ICT)

Level: Master

Type: Elective [biometric security and surveillance]

ECTS: 6

1.10. Objetivos de la asignatura / Course objectives

The main objective of video analysis for video-surveillance is the extraction of useful semantic information: detection of people presence and trajectory, detection of irregular events, etc. The general objective of this course is to present automatic video-surveillance systems (with single or multiple cameras), to describe the practical application of generic video analysis techniques in this domain, and to present specific video-surveillance applications: people detection and tracking, abandoned/stolen object detection, etc.

[El principal objetivo del análisis de secuencias de vídeo en el entorno de la videovigilancia es la extracción de información semántica útil: detección de presencia y trayectoria de personas, detección de eventos irregulares, etc. El objetivo general de esta asignatura es presentar los sistemas automáticos de videovigilancia (con una o múltiples cámaras), describir la aplicación práctica de técnicas generales de análisis de secuencias de vídeo en este ámbito, y presentar aplicaciones específicas de vídeo-seguridad: detección y seguimiento de personas, detección de robo o abandono, etc.]

At the end of each unit, the student should be able to:

UNIT	BY UNIT SPECIFIC OBJECTIVES
UNIT 1 Introduction to Automatic Video Surveillance Systems	
1.1.	Understand and identify the elements of a surveillance system
1.2.	Understand and describe the key techniques used in video surveillance systems
1.3.	Understand the challenges of video-surveillance
UNIT 2 Video Analysis for Surveillance	
2.1.	Understand specific foreground segmentation algorithms used for video-surveillance
	and their associated pre- and post-processing techniques
2.2.	Understand specific shadow detection algorithms used for video-surveillance and their
	associated pre- and post-processing techniques
2.3.	Understand specific tracking algorithms used for video-surveillance and their
	associated pre- and post-processing techniques
2.4.	Understand specific object detection algorithms used for video-surveillance and their
	associated pre- and post-processing techniques
2.5.	Understand specific event detection algorithms used for video-surveillance and their
	associated pre- and post-processing techniques
UNIT 3 Video-surveillance Applications	
3.1.	Understand the technologies used for people detection and tracking, and the
	associated open issues
3.2.	Understand the technologies used for re-identification of people in multi-camera
	systems, and the associated open issues
3.3.	Understand the technologies used for abandoned/stolen object detection, and the
	associated open issues
3.4	Understand the technologies used for crowd analysis and the associated open issues

Code: 32446

Institution: Escuela Politécnica Superior

Degree: Master's program in Research and Innovation in Information and

Communications Technologies (I²-ICT)

Level: Master

Type: Elective [biometric security and surveillance]

ECTS: 6

1.11. Course contents

- 1. Introduction to Automatic Video-surveillance Systems
- 2. Video Analysis for Surveillance
 - 2.1. Foreground segmentation
 - 2.2. Shadow detection
 - 2.3. Tracking
 - 2.4. Object detection
 - 2.5. Event analysis and understanding
- 3. Video-surveillance Applications
- 4. Evolution and open aspects in video-surveillance

1.12. Course bibliography

- 1. S.A. Velastin, P. Remagnino, "Intelligent Distributed Video Surveillance Systems", IET, 2006
- 2. O. Javed, M. Shah, "Automated Multi-camera Surveillance: Algorithms and Practice", Springer 2008
- 3. E. Maggio, A. Cavallaro, "Video Tracking: Theory and Practice", Wiley, 2011.
- 4. Selected papers in relevant journals and conferences for topics covered in the course

1.13. Coursework and evaluation

The course involves lectures, research-oriented student presentations, lab assignments (including implementation and documentation), seminar presentations and an exam.

In the *ordinary exam period*, the evaluation will be made according to the following scheme:

- 30 % Student presentations
- 40 % Lab assignments
- 30 % Exam

The maximum grade to be obtained is 10 and each of the parts (presentations, labs and exam) will be also graded with a maximum grade of 10. In order to pass the course, it is necessary to have a pass grade (\geq 5) in the overall evaluation, as well as a pass grade (\geq 4) in the three individual parts. The grades of the individual parts are kept for the extraordinary exam period.

In order to be assessed on each individual part during the *ordinary exam period*, attendance is mandatory. Students are requested to assist to a minimum of 90% of lectures/labs for each individual part. The absence to lecture/labs will be only permitted under exceptional circumstances which should be justified (e.g. medical reasons). If students fail to meet the 90% assistance criterion, a fail grade will be

Code: 32446

Institution: Escuela Politécnica Superior

Degree: Master's program in Research and Innovation in Information and

Communications Technologies (I²-ICT)

Level: Master

Type: Elective [biometric security and surveillance]

ECTS: 6

given and the students will be evaluated according to the *extraordinary exam period*.

In case of a fail grade in the ordinary exam period, in the *extraordinary exam period*, the grade will be determined by:

- 35 % Lab assignments [if the student does not turn in a new version, the grade will be the one corresponding to the ordinary exam period]
- 65 % Project on a proposed research topic in video-surveillance In order to pass the course, it is necessary to have a pass grade (\geq 5) in the overall evaluation, as well as a pass grade (\geq 4) in the two individual parts.