4f and 5d levels of Ce$^{3+}$ in D_2 eightfold oxygen coordination

Luis Seijo1,2,* and Zoila Barandiarán1,2

1Departamento de Química, Universidad Autónoma de Madrid, 28049 Madrid, Spain
2Instituto Universitario de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain

(Dated: January 15, 2014)

The effects of the first coordination shell geometry of the trivalent Cerium ion (Ce$^{3+}$) on its 4f and 5d levels in Ce-doped oxides with a D_2 8-fold site, like garnets, are studied with embedded cluster, wave function based ab initio methods. The only deformations of a D_2 CeO$_8$ moiety that are found to shift the lowest 4f $→$ 5d transition to the red (longer wavelengths) are the symmetric Ce-O bond compression and the tetragonal symmetric bond bending. In a first approximation, the lowest 5d level of Ce$^{3+}$ in garnets can be understood as resulting from the cubic E_g level with a strong E_g $×$ e_g Jahn-Teller coupling. These results are analyzed in terms of 5d $→$ 4f centroid energy differences and ligand field stabilizations. The splittings of the upper 5d levels and of the 4f levels are also discussed.

Keywords: Cerium, Ce$^{3+}$, 4f, 5d, D_2, oxides, garnets, 8-fold coordination

I. INTRODUCTION

Yttrium aluminum garnet Y$_3$Al$_5$O$_{12}$ (YAG) doped with Ce$^{3+}$ is a well known phosphor with a blue Ce$^{3+}$ 4f $→$ 5d absorption and a corresponding yellow 5d $→$ 4f emission, which is used in InGaN blue LED based, white light solid-state lighting devices. In the search for alternative phosphors with the best efficiencies and tailored color-rendering indexes, doping Ce$^{3+}$ in other artificial garnets has been a line of work. It led, for instance, to the discoveries of the Lu$_2$CaMg$_{5/2}$Si$_{3/2}$O$_{12}$:Ce$^{3+}$ orange phosphor and the Ca$_3$Sc$_2$Si$_3$O$_{12}$:Ce$^{3+}$ green phosphor.

Most garnets can be described in terms of a 160 atom body-centered cubic unit cell (80 atom primitive cell) of the $Ia3d$ (230) space group, which contains eight formula units of $A_3B'_4B''_4O_{12}$. A, B’ and B” are cations of different nominal charges in different symmetry sites. In Y$_3$Al$_5$O$_{12}$, for instance, A=Y, $B’$=Al, and $B”$=Al, all with oxidation states +3. In Ca$_3$Sc$_2$Si$_3$O$_{12}$, A=Ca, $B’$=Sc, and $B”$=Si, with respective oxidation states +2, +3, and +4. In Lu$_2$CaMg$_{5/2}$Si$_{3/2}$O$_{12}$, 2/3 of the A sites are occupied by Lu and 1/3 by Ca atoms. $B’$=Mg, and $B”$=Si, with respective oxidation states +3, +2, +2 and +4. In all cases, A occupy 24(c) sites of 8-fold coordination, $B’$ 16(a) sites of 6-fold coordination, and $B”$ 24(d) sites of 4-fold coordination, all of them at fixed positions, with the remaining 96 O atoms in (h) sites, which depend on three x, y and z internal parameters. Optically active Ce$^{3+}$ impurities substitute for A atoms at (c) sites, which have the local symmetry of the D_2 point group and a first coordination shell made of 8 oxygen atoms.

The energies of the 4f and 5d levels of Ce$^{3+}$ in particular garnets and in other oxides depend on the bonding and electrostatic interactions between Ce and the hosts, and they can be calculated in a one-by-one basis, with reasonable accuracy, by means of ab initio methods, both in D_2 local symmetry like in Ce-doped YAG and in lower local symmetries like in Ce,La-doped YAG and Ce,Ga-doped YAG. These energies are dominated, up to first-order, by the bonding interactions between Ce and its first oxygen coordination shell, subject to the basic confinement embedding effects of the host. Other specific host embedding effects are important at higher orders of approximation and they refine the results.

This paper is aimed at providing a basic study of the energies of the levels of the 4f1 and 5d1 manifolds of Ce$^{3+}$ in D_2 8-fold oxygen coordination. We report the results of an ab initio calculation of them after consideration of the bonding interactions with the first oxygen coordination shell only, under the effects of a cubic, non host specific, confinement embedding potential. The present results are a common reference for the 4f and 5d levels of Ce$^{3+}$ in specific garnets (and other oxides with 8-fold coordination), which can be considered as resulting from them after including the host specific embedding effects.

II. METHOD

In order to know the 4f and 5d energy levels of Ce$^{3+}$ under the effects of its interactions with a coordination shell of eight oxygens in a D_2 symmetry site of a solid oxide, we calculated the corresponding energy levels of the (CeO$_8$)$_{3/2}$ cluster embedded in a O_h host potential. We will describe later the details of the ab initio wave function based quantum mechanical calculation. With the choice of a host embedding potential of cubic symmetry, all the energy splittings and changes due to D_2 distortions are ascribable to the interactions between Ce and the O atoms.

It is convenient to look at the D_2 energy levels as derived from the more familiar O_h levels after geometry distortions and this is what we did in this work. In consequence with this, we decided to take a cubic CeO$_8$ O_h moiety as a reference and to chose six atomic displacement coordinates $S_1 - S_6$ that transform according to irreducible representations of the O_h point symmetry group for the six degrees of freedom of the CeO$_8$ D_2 moiety. They are defined in Table I and represented in Fig. 1; more details are given in the Appendix. S_1 represents the breathing (or symmetric bond stretching) of the reference cube and it transforms accord-
ing to the totally symmetric irreducible representation a_{1g};
δ_2 represents an asymmetric bond stretching of the crosses
$a_1 - a_2 - a_3 - a_4$ and $e_1 - e_2 - e_3 - e_4$ and it transforms
according to the e_g sub-species of the doubly degenerate
e_g irreducible representation;11 S_3 and S_4 are the symmetric
(e_g, θ) and asymmetric (e_g, e) bond bendings of the a and
e; crosses; finally, S_5 and S_6 are the symmetric (e_e, θ) and
asymmetric (e_e, e) twistings of the crosses.

The details of the quantum mechanical calculation are
the following. We performed \textit{ab initio} calculations on a
(CeO\textsubscript{8})13− cluster which include Ce-O bonding effects,
static and dynamic electron correlation effects, scalar and
spin-orbit coupling relativistic effects, and cubic host em-
bedding effects. For each D_2 nuclear configuration of the
(CeO\textsubscript{8})13− embedded cluster, we performed, in a
first step, scalar relativistic calculations with the many-
electron second-order Douglas-Kroll-Hess (DKH) Hamilto-
nian.12,13 These were state-average complete-active-space
self-consistent-field14–16 (SA-CASSCF) calculations with the
active space that results from distributing the open-shell
electron in 13 active molecular orbitals with main char-
acter Ce 4f, 5d, 6s, which provided occupied and empty
molecular orbitals to feed subsequent multi-state second-
order perturbation theory calculations (MS-CASPT2).17–20
where the dynamic correlation of 73 electrons (the
5s, 5p, 4f, 5d, 6s electrons of Ce and 2s, 2p electrons of the
O atoms) were taken into account. In a second step, spin-
orbit coupling effects were included by adding the AMFI
approximation of the DKH spin-orbit coupling operator21
to the Hamiltonian and performing restricted-active-space
state-interaction spin-orbit calculations (RASSI-SO)22 with
the previously computed SA-CASSCF wave functions and
MS-CASPT2 energies. All are all-electron calculations with
atomic natural orbital (ANO) relativistic basis sets for Cerium23 and Oxygen.24

In all these calculations, the Hamiltonian of the
(CeO\textsubscript{8})13− cluster is supplemented with a cubic embedding
Hamiltonian. For this we chose the \textit{ab initio} model potential
embedding Hamiltonian (AIMP)25 of a SrO host in its
high pressure CsCl lattice structure26 (Pm\textsubscript{3}m, no. 221),
which provides a perfect 8-fold cubic oxide coordination of
the cationic site. We used a lattice constant $a = 2.87$ Å
(the one that gives a Ce-O equilibrium distance in the cubic
(CeO\textsubscript{8})13− embedded cluster of 2.34 Å at the MS-CASPT2
level of calculation, which is the Ce-O distance of the reference
CeO\textsubscript{8} cube in an hypothetical undistorted Ce-doped
YAG26). The embedding potential of this 8-fold coordinated
cubic oxide was computed in Hartree-Fock self-consistent
embedded-ions calculations (SCEI),27 in which the input
embedding AIMPs used for the Sr2+ and O2− ions of SrO
are consistent with the output AIMPs obtained out of the
HF orbitals of the embedded Sr2+ and O2− ions.

III. RESULTS

The dependence of the $4f \rightarrow 4f$ and $4f \rightarrow 5d$ transi-
tions on the D_2 distortions of the first coordination shell
are shown in Fig. 2 without spin-orbit coupling and in
Fig. 3 with spin-orbit coupling interactions included. The
chosen ranges of the $S_1 - S_8$ coordinates span their usual
values in natural and artificial garnets, which are shown
in Table II and in the Figures. Besides the transitions, the
Figures include two additional lines: One is the dif-
fERENCE between the 5d and 4f energy centroids (aver-
gage energies of the five 5d^1 levels and the seven 4f^1
levels), $\Delta E_{\text{centroid}} = E_{\text{centroid}}(5d^1) - E_{\text{centroid}}(4f^1)$; the
other is the difference between the ligand field stabiliza-
tion energies of the 5d and 4f lowest levels $\Delta E_{\text{ligand field}} = [E_{\text{centroid}}(5d^1) - E_1(5d^1)] - [E_{\text{centroid}}(4f^1) - E_1(4f^1)]$. (See
Fig. 2 in Ref. 9.) The fact that the lowest 4$f \rightarrow 5d$
transition equals their subtraction, $E_1(5d^1) - E_1(4f^1) =
\Delta E_{\text{centroid}} - \Delta E_{\text{ligand field}}$, has been used to analyze the rea-
sons behind red and blue shifts of this transition.9,10

Let us first focus on the lowest 4$f \rightarrow 5d$ transition,
whose reverse is the luminescence of Ce3+ in
garnets and other oxides. It is clear that only two coordinates have
an important impact on it: the breathing mode S_1, which does
not distort the cubic symmetry, and the symmetric bond
bending mode S_3, which gives a e_g tetragonal distortion of the
CeO\textsubscript{8} cube.

Symmetric compression of the Ce-O bonds lowers the
4$f \rightarrow 5d$ transition. This is almost entirely due to the
increase of the 5d ligand field it produces, which lowers
the first 5d^1 level with respect to its centroid. This effect
is slightly compensated with a small increase due to the
centroids: bond compression slightly shifts the 5d centroid
upwards with respect to the 4f centroid. The latter ob-
ervation has been made before10,28 and it contradicts the
predictions of the usual model for the centroid energy dif-
fERENCE,29–31 according to which it should be smaller for
smaller bond lengths; nevertheless, the model has been
useful to rationalize 5$d \rightarrow 4f$ luminescences.32 The con-
tribution of the breathing mode S_1 to the shift of the lower-
est 4$f \rightarrow 5d$ transition energy represented in Fig. 3 fits
8255 $S_1 - 4803 S_1$ (S in Å, energy shift in cm$^{-1}$); for cubi
CeO\textsubscript{8} moieties $S_1 = 2\sqrt{2}\Delta d$, Δd being the Ce-O bond
length change with respect to the reference cube; in our
case the reference cube has Ce-O bond length of 2.34 Å
and a lowest 4$f \rightarrow 5d$ transition of 2600 cm$^{-1}$.

Symmetric bond bending along the S_3 coordinate lowers
de 4$f \rightarrow 5d$ transition. Among the D_2 distortions of the
cube, it is the only tetragonal one. Also, it is the only one
with a significant impact on the transition (for the ranges
of $S_2 - S_8$ shown by garnets). The enhancement of tetra-
goonal distortions of the cube as responsible for the red-shifts
of the Ce3+ luminescence has been suggested by Chetham
and coworkers33 and it is supported by the present inves-
tigation. The image emerging from an analysis in terms of
configuration energy centroids and ligand field stabiliza-
tion is one in which the lowering of the first 5d^1 level with
respect to the ground state is due in almost equal amounts
to an increase of the ligand field (of its tetragonal com-
ponent) and to a reduction of the centroid energy dif-
ference. Again, the latter effect contradicts the prediction of
the Judd-Morrison model: a very small increase of the centroid energy difference out of a very small increase of the Ce-O distances. The contribution of the tetragonal mode S_1 (in Å) to the shift of the lowest $4f \rightarrow 5d$ transition (in cm$^{-1}$) represented in Fig. 3 fits $1844S_3 - 2885S_3^2$ for $S_3 < 0$ and $-1876S_3 - 141S_3^2$ for $S_3 > 0$. This contribution is due in almost equal amounts to the lowering of the centroid energy difference and the increasing of the ligand field. The centroid effect fits $10S_3 - 2695S_3^2$ for $S_3 < 0$ and $12S_3 - 2581S_3^2$ for $S_3 > 0$; the ligand field effect fits $1834S_3 - 190S_3^2$ for $S_3 < 0$ and $-1887S_3 + 2440S_3^2$ for $S_3 > 0$.

Apart from S_1 and S_3, only the asymmetric stretching S_2 has an effect on the first $4f \rightarrow 5d$ transition, although it is a very small one (it fits $-2033S_2^2$ in the range of the figures). This result allows one to say that, in a first approximation and in spite of the large values of the S_i coordinates applicable to garnets, the lowest 5d level can be understood as resulting from the cubic E_g level with a strong $E_g \times e_g$ Jahn-Teller coupling.44

Regarding higher $4f \rightarrow 5d$ transitions, several remarks can be made from Figs. 2 and 3. The splitting of the first and second 5d levels related with the cubic $2E_g$ is due to the symmetric bending S_3 and to the symmetric twisting S_5, with a significantly higher contribution from the latter in garnets; however, different splittings in different garnets would be due to S_3. The splittings of the three upper levels, mostly related with the cubic $2T_{2g}$, come basically from the symmetric bending S_3 and the asymmetric stretching S_2, with a small contribution from the symmetric twisting S_5 and negligible contributions from the asymmetric bending and twisting S_4 and S_6. The larger S_1 and the absolute values of S_2 and S_3, the higher probability for the third 5d level to appear below the conduction band of the garnet.

Finally, the $4f$ levels are shown in more detail in Figs. 4 and 5, without and with spin-orbit coupling respectively. These are interesting because the 5d \rightarrow 4f emission is made of the superposition of the seven individual emissions and the full width and shape of the emission band depends on the relative positions of the 4f levels, although not only on them. Since the emission to the highest 4f level ($7T_{5}^\circ$ or $4f_7$) has a minor contribution to the full emission band shape, we can have a predictive hint by looking at the six lowest 4f levels. (Note that the experimental 5d \rightarrow 4f emission exhibits two peaks or shoulders, which are often taken as the difference between the $2F_{7/2}$ and $2F_{5/2}$ in the garnets; this difference is around 2000 cm$^{-1}$ in Fig.5.) According to Fig. 5, the emission band width seems to be controlled by S_2 and S_3, so that the garnets with higher absolute values of these two coordinates would tend to have wider emission bands because of their higher 4f level separation. Of course, the width of each individual 5d \rightarrow 4f emission will depend on the 5d and 4f equilibrium offsets.

Since only the first coordination shell effects in a hypothetical undistorted Ce$_A$ substitutional defect are properly taken into account in this work, whereas the host specific electronic effects and the structural relaxation effects after the substitution are disregarded, direct comparisons of the present results with experiments must be taken with care. Nevertheless, it is interesting to see how these results compare with experiments in the most studied case of Ce$^{3+}$-doped YAG: It gives us a hint on the size of the disregarded contributions. The results are summarized in Table III. The host specific embedding and structural relaxation effects are not large but are significant. Different signs and sizes are observed in different states, which are a consequence of effects on the effective field of the second and more distant neighbors, as well as of local (mostly first neighbor) relaxations. These additional effects on the effective ligand field are shown, for instance, in the different impacts on the total splitting of the 5d shell (30150 vs. 33200 cm$^{-1}$, -10%), on the splitting of the four first 5d levels (28500 vs. 27880 cm$^{-1}$, +2%; with 26900 cm$^{-1}$ experimental), and on the splitting of the two first 5d levels (7620 vs. 4000 cm$^{-1}$, +48%; with 7400 cm$^{-1}$ experimental). The only consideration of the first coordination shell of Cr$^{3+}$ gives a good qualitative and even semi-quantitative description of the four 5d levels of Ce$^{3+}$ in YAG that have been experimentally observed, which are quite reasonably reproduced by the ab initio calculations in Ref. 8.

IV. CONCLUSIONS

The levels of the $4f^{1}$ and $5d^{1}$ manifolds of Ce$^{3+}$ in D_2-fold oxygen coordination have been calculated ab initio as a function of D_2 deformation coordinates of a reference cube, with the goal of pinpointing the effects of the geometry of the first coordination shell. A (CeO$_6$)$_{13-}$ cluster under the effects of a confinement AIMP embedding potential of cubic symmetry has been used at a level of calculation all-electron DHK for the Hamiltonian and SA-CASSCF/MS-CASPT2/RASSI-SO for the wave functions. The results include bonding, correlation, scalar relativistic, spin-orbit coupling, and embedding interactions.

It is found that, within the range of D_2 distortions covering natural and artificial garnets, the lowest 4f \rightarrow 5d transition shifts significantly to the red only as a consequence of symmetric Ce-O bond compression and tetragonal symmetric bond bending. Then, in a first approximation, the lowest 5d level of Ce$^{3+}$ in garnets can be understood as resulting from the cubic E_g level with a strong $E_g \times e_g$ Jahn-Teller coupling.

The increase of the 5d cubic ligand field dominates the effects of the bond compression, whereas the effect of the tetragonal bond bending distortion is divided in almost equal amounts between an increase of the 5d tetragonal ligand field and a reduction of the energy difference between the 5d and 4f energy centroids.

The splittings of the upper 5d levels and of the 4f levels have also been studied.
Acknowledgments

This work was partly supported by a grant from Ministerio de Economía y Competitividad, Spain (Dirección General de Investigación y Gestión del Plan Nacional de I+D+I, MAT2011-24586).

APPENDIX

We have chosen Oxygen atoms a_1 and e_1 (see Table I and Fig. 1) as the symmetry independent atoms. The other atoms are obtained upon application of the D_2 point group symmetry operations. So, any particular D_2 atomic configuration of the CeO$_8$ moiety is defined with $\vec{r}_{a_1} = (x_{a_1}, y_{a_1}, z_{a_1})$, $\vec{r}_{e_1} = (x_{e_1}, y_{e_1}, z_{e_1})$, $\vec{r}_{e_2} = \vec{C}_{2y} \vec{r}_{a_1}$, $\vec{r}_{e_3} = \vec{C}_{2y} \vec{r}_{e_1}$, $\vec{r}_{e_4} = \vec{C}_{2x} \vec{r}_{a_1}$, $\vec{r}_{e_5} = \vec{C}_{2x} \vec{r}_{e_1}$.

Taking an arbitrary reference cube with Ce-O distance d, in which the chosen positions for a_1 and e_1 are $\vec{r}_{a_1,ref} = ((\sqrt{2},0,1)d/\sqrt{3}$ and $\vec{r}_{e_1,ref} = (0,\sqrt{2},1)d/\sqrt{3}$, the D_2 atomic configurations of the CeO$_8$ moiety can also be defined in terms of displacements of the symmetry independent atoms $\delta \vec{r}_{a_1} = \vec{r}_{a_1} - \vec{r}_{a_{1,ref}} = (x_{a_1} - d/\sqrt{3}, y_{a_1}, z_{a_1} - d/\sqrt{3})$ and $\delta \vec{r}_{e_1} = \vec{r}_{e_1} - \vec{r}_{e_{1,ref}} = (x_{e_1}, y_{e_1} - d/\sqrt{3}, z_{e_1} - d/\sqrt{3})$, together with the displacements of the symmetry dependent atoms $\delta \vec{r}_{e_2} = \vec{C}_{2y} \delta \vec{r}_{a_1}$, $\delta \vec{r}_{e_3} = \vec{C}_{2y} \delta \vec{r}_{e_1}$, $\delta \vec{r}_{e_4} = \vec{C}_{2x} \delta \vec{r}_{a_1}$, $\delta \vec{r}_{e_5} = \vec{C}_{2x} \delta \vec{r}_{e_1}$, $\delta \vec{r}_{e_6} = \vec{C}_{2y} \delta \vec{r}_{e_4}$, $\delta \vec{r}_{e_7} = \vec{C}_{2y} \delta \vec{r}_{e_5}$, $\delta \vec{r}_{e_8} = \vec{C}_{2x} \delta \vec{r}_{e_4}$, $\delta \vec{r}_{e_9} = \vec{C}_{2x} \delta \vec{r}_{e_5}$.

Substitution of the values of these atomic displacements in the equations in Table I gives the values of the D_2 totally symmetric displacement coordinates of the CeO$_8$ moiety $S_1, S_2, \ldots S_6$.

We may note that, if a cube with a different Ce-O distance was taken as a reference, all D_2 displacement coordinates would remain the same except for S_1. So, it may be convenient to chose, for a particular D_2 configuration, the reference cube that gives $S_1 = 0$; this particular cube has a Ce-O distance $d_{ref} = d + S_1/\sqrt{8}$. In other words, we can define any D_2 configuration of the CeO$_8$ moiety using d and $S_1, S_2, \ldots S_6$, or, alternatively, using d_{ref} and $S_1 = 0, S_2, \ldots S_6$.

Also, we should remark that, although a general D_2 configuration of the CeO$_8$ moiety has six degrees of freedom, the D_2 configurations of the original AO$_8$ moiety in undoped garnets only has four degrees of freedom. These are usually given in terms of the $Ia\overline{3}d$ space group structural parameters a, x_O, y_O, z_O; a being the lattice constant and x_O, y_O, z_O the fractional coordinates of the special position (h) occupied by the Oxygen atoms. For (x_O, y_O, z_O) close to $(-0.03, 0.05, 0.15)$, which are the most common choice in the literature, the chosen positions of Oxygens a_1 and e_1 are $a (1/8 - x_O, y_O + z_O - 1/4)/\sqrt{2}, (y_O - z_O + 1/4)/\sqrt{2}$ and $(z_O - 1/8, 1/8 - x_O - y_O)/\sqrt{2}, (1/4 + x_O - y_O)/\sqrt{2}$ and the position of Ce is $(1/2, 0, 0)$, which allow to compute \vec{r}_{a_1} and \vec{r}_{e_1}. With these, $d_1, S_1, S_2, \ldots S_6$, or d_{ref} and $S_1 = 0, S_2, \ldots S_6$ are calculated as described above. For other choices of (x_O, y_O, z_O), we can first find the equivalent position close to $(-0.03, 0.05, 0.15)$ and then do as it was just described. For instance, the experimental data (0.0351, 0.0538, 0.6578) of Lu$_2$CaMg$_2$Si$_3$O$_{12}$ (Ref. 4) can be seen as the $(-x, y, z + 1/2)$ equivalent position of $(-0.0351, 0.0538, 0.1578)$.

* Corresponding author; Electronic address: luis.seijo@uam.es

Table I: Definitions of the D_2 totally symmetric displacements of the CeO$_8$ moiety chosen in this work. Stretching, bending, and twisting O_h symmetry coordinates. The labels of the oxygen atoms and the chosen cartesian axes are defined in Fig. 1: In the reference cube, the symmetry independent oxygen atoms a_1 and e_1 are located at $(\sqrt{2}, 0, 1)d/\sqrt{3}$ and $(0, \sqrt{2}, 1)d/\sqrt{3}$ respectively, with d being the Ce-O distance. \hat{R} is the D_2 symmetrization operator: the normalized addition of the group symmetry operations (the identity and the three 180° rotations around the cartesian axes). δx_{a_1} is the x cartesian displacement of the Oxygen atom a_1 from its position in the reference cube: $\delta x_{a_1} = x_{a_1} - x_{a_1,\text{ref}}$; identical definitions stand for the other cartesian displacements.

<table>
<thead>
<tr>
<th>Displacement</th>
<th>O_h irrep</th>
<th>$\hat{R} = \frac{1}{2} \left(I + \hat{C}{2x} + \hat{C}{2y} + \hat{C}_{2z} \right)$</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>symmetric stretching</td>
<td>a_{1g}</td>
<td>$S_1 = \frac{1}{\sqrt{6}} \hat{R} \left[(\sqrt{2} \delta x_{a_1} + \delta z_{e_1}) + (\sqrt{2} \delta y_{e_1} + \delta z_{e_1}) \right]$</td>
<td></td>
</tr>
<tr>
<td>asymmetric stretching</td>
<td>e_g</td>
<td>$S_2 = \frac{1}{\sqrt{6}} \hat{R} \left[(\sqrt{2} \delta x_{a_1} + \delta z_{e_1}) - (\sqrt{2} \delta y_{e_1} + \delta z_{e_1}) \right]$</td>
<td></td>
</tr>
<tr>
<td>symmetric bending</td>
<td>e_g</td>
<td>$S_3 = \frac{1}{\sqrt{6}} \hat{R} \left[-\delta x_{a_1} + \sqrt{2} \delta z_{e_1} \right] + \left[-\delta y_{e_1} + \sqrt{2} \delta z_{e_1} \right]$</td>
<td></td>
</tr>
<tr>
<td>asymmetric bending</td>
<td>e_g</td>
<td>$S_4 = \frac{1}{\sqrt{6}} \hat{R} \left[-\delta x_{a_1} + \sqrt{2} \delta z_{e_1} \right] - \left[-\delta y_{e_1} + \sqrt{2} \delta z_{e_1} \right]$</td>
<td></td>
</tr>
<tr>
<td>symmetric twisting</td>
<td>e_u</td>
<td>$S_5 = \frac{1}{\sqrt{2}} \hat{R} \left[-\delta y_{a_1} + \delta x_{e_1} \right]$</td>
<td></td>
</tr>
<tr>
<td>asymmetric twisting</td>
<td>e_u</td>
<td>$S_6 = \frac{1}{\sqrt{2}} \hat{R} \left[\delta y_{a_1} + \delta x_{e_1} \right]$</td>
<td></td>
</tr>
<tr>
<td>Garnet</td>
<td>Ref.</td>
<td>a (Å)</td>
<td>x_0</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>LuAG</td>
<td>6</td>
<td>11.9060</td>
<td>-0.02940</td>
</tr>
<tr>
<td>YbAG</td>
<td>6</td>
<td>11.9310</td>
<td>-0.02960</td>
</tr>
<tr>
<td>ErAG</td>
<td>36</td>
<td>11.9928</td>
<td>-0.03039</td>
</tr>
<tr>
<td>YAG</td>
<td>6</td>
<td>12.0000</td>
<td>-0.03060</td>
</tr>
<tr>
<td>GdAG</td>
<td>6</td>
<td>12.1130</td>
<td>-0.03110</td>
</tr>
<tr>
<td>LuGG</td>
<td>6</td>
<td>12.1880</td>
<td>-0.02520</td>
</tr>
<tr>
<td>YbGG</td>
<td>6</td>
<td>12.2040</td>
<td>-0.02590</td>
</tr>
<tr>
<td>YGG</td>
<td>37</td>
<td>12.2730</td>
<td>-0.02740</td>
</tr>
<tr>
<td>HoGG</td>
<td>38</td>
<td>12.2900</td>
<td>-0.02740</td>
</tr>
<tr>
<td>DyGG</td>
<td>38</td>
<td>12.3060</td>
<td>-0.02780</td>
</tr>
<tr>
<td>TbGG</td>
<td>39</td>
<td>12.3474</td>
<td>-0.02820</td>
</tr>
<tr>
<td>GdGG</td>
<td>39</td>
<td>12.3829</td>
<td>-0.02890</td>
</tr>
<tr>
<td>SmGG</td>
<td>39</td>
<td>12.4361</td>
<td>-0.02920</td>
</tr>
<tr>
<td>NdGG</td>
<td>39</td>
<td>12.5051</td>
<td>-0.03000</td>
</tr>
<tr>
<td>Pyrope</td>
<td>40</td>
<td>11.4566</td>
<td>-0.03290</td>
</tr>
<tr>
<td>Almandine</td>
<td>41</td>
<td>11.5230</td>
<td>-0.03401</td>
</tr>
<tr>
<td>Spessartine</td>
<td>42</td>
<td>11.6190</td>
<td>-0.03491</td>
</tr>
<tr>
<td>Grossular</td>
<td>40</td>
<td>11.8515</td>
<td>-0.03760</td>
</tr>
<tr>
<td>Andradite</td>
<td>7</td>
<td>12.0578</td>
<td>-0.03940</td>
</tr>
<tr>
<td>Lu$_2$CaMg$_2$Si$_2$O$_12$</td>
<td>7</td>
<td>12.2500</td>
<td>-0.04004</td>
</tr>
</tbody>
</table>

TABLE III: $4f$ and $5d$ energy levels of Ce$^{3+}$-doped YAG (in cm$^{-1}$).

<table>
<thead>
<tr>
<th>Level</th>
<th>This work a</th>
<th>Ref. 8 b</th>
<th>Difference c</th>
<th>Level</th>
<th>This work a</th>
<th>Ref. 8 b</th>
<th>Difference c</th>
<th>Experiment d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1\Gamma_4$ $4f_1$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$8\Gamma_5$ $5d_1$</td>
<td>25680</td>
<td>24040</td>
<td>-1640</td>
<td>22000 e</td>
</tr>
<tr>
<td>$2\Gamma_4$ $4f_2$</td>
<td>145</td>
<td>370</td>
<td>+225</td>
<td>$9\Gamma_5$ $5d_2$</td>
<td>29680</td>
<td>31660</td>
<td>+1980</td>
<td>29400 e</td>
</tr>
<tr>
<td>$3\Gamma_4$ $4f_3$</td>
<td>900</td>
<td>820</td>
<td>-80</td>
<td>$10\Gamma_5$ $5d_3$</td>
<td>52350</td>
<td>48070</td>
<td>-4280</td>
<td>44000 e</td>
</tr>
<tr>
<td>$4\Gamma_4$ $4f_4$</td>
<td>2280</td>
<td>2360</td>
<td>+80</td>
<td>$11\Gamma_5$ $5d_4$</td>
<td>53560</td>
<td>52540</td>
<td>-1020</td>
<td>48900 f</td>
</tr>
<tr>
<td>$5\Gamma_4$ $4f_5$</td>
<td>2300</td>
<td>2570</td>
<td>+270</td>
<td>$12\Gamma_5$ $5d_5$</td>
<td>58900</td>
<td>54190</td>
<td>-4710</td>
<td></td>
</tr>
<tr>
<td>$6\Gamma_4$ $4f_6$</td>
<td>2540</td>
<td>2810</td>
<td>+270</td>
<td>$7\Gamma_4$ $4f_7$</td>
<td>5650</td>
<td>4320</td>
<td>-1330</td>
<td></td>
</tr>
</tbody>
</table>

aSpin-orbit coupling calculation: Undistorted relaxation, first coordination shell effect only.

bAb initio calculations also including host specific embedding and structural relaxation.

cEstimated effects of host specific embedding plus structural relaxation.

dAfter the assignment analysis in Reference 35.

eReference 1.

fReference 43.
Figure captions

FIG. 1: D_2 totally symmetric displacements of the CeO$_8$ moiety: Stretching, bending, and twisting O_h symmetry coordinates S_1 (a_{1g} symmetric stretching -breathing-), S_2 (e_g asymmetric stretching), S_3 (e_g symmetric bending), S_4 (e_g asymmetric bending), S_5 (e_u symmetric twisting), and S_6 (e_u asymmetric twisting). See Table I for the detailed definitions.

FIG. 2: 4f (dashed lines) and 5d (full lines) energy levels of the (CeO$_8$)$_{13}^-$ embedded cluster (relative to the ground state) as a function of the $S_1 - S_6$ D_2 oxygen displacement coordinates, calculated without spin-orbit coupling. The differences between the 5d and 4f energy centroids (dot-dashed lines) and between the ligand field stabilization energies of the 5d and 4f lowest levels (doted lines) are also shown; the lowest 4f → 5d transition equals the subtraction of these two. Experimental values of $S_1 - S_6$ of 21 pure garnets are shown as small vertical lines.

FIG. 3: 4f and 5d energy levels of the (CeO$_8$)$_{13}^-$ embedded cluster as a function of $S_1 - S_6$, calculated with spin-orbit coupling. All levels are $D'_2 \Gamma_5$ Kramer doublets. See Fig. 2 caption.

FIG. 4: 4f energy levels of the (CeO$_8$)$_{13}^-$ embedded cluster as a function of $S_1 - S_6$, calculated without spin-orbit coupling. Dotted lines: 3A levels; full lines: 3B_1 levels; dashed lines: 2B_2 and 2B_3 levels. Experimental values of $S_1 - S_6$ of 21 pure garnets are shown as small vertical lines.

FIG. 5: 4f energy levels of the (CeO$_8$)$_{13}^-$ embedded cluster as a function of $S_1 - S_6$, calculated with spin-orbit coupling. All levels are $D'_2 \Gamma_5$ Kramer doublets. Experimental values of $S_1 - S_6$ of 21 pure garnets are shown as small vertical lines.
Figure 2. Seijo and Barandiarán
Figure 3. Seijo and Barandiarán
Figure 4. Seijo and Barandiarán
Figure 5. Seijo and Barandiarán