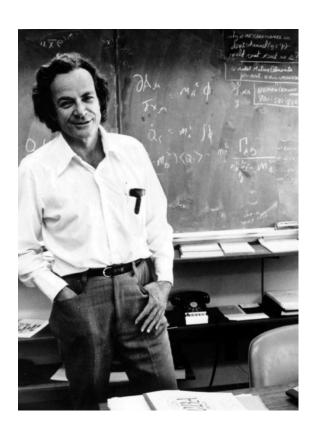
Computación y Complejidad

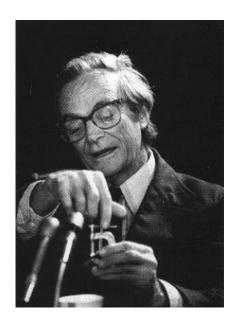
Xavier Alamán xavier.alaman@uam.es Despacho B420

- Presenta los límites de la computación, así como una propuesta de futuro: la computación cuántica.
- Problemas no computables, problemas no tratables, teoría del caos, límites en la automatización del concepto de "verdadero", computación cuántica.

Organización de la asignatura

- El énfasis de la asignatura es que el alumno comprenda las consecuencias de los distintos teoremas y paradigmas computacionales.
- Para ello se realizarán diversas actividades: lecturas, ejercicios y pruebas en clase, debates, presentaciones de temas por parte de los alumnos, ensayos, proyectos de programación, presentaciones del profesor, etc.

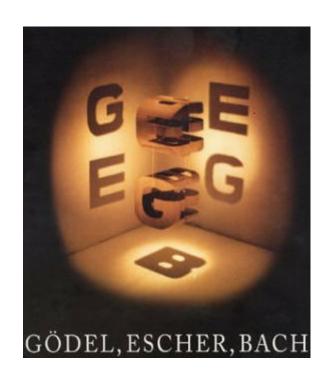



Temario: ¿Qué es computar?

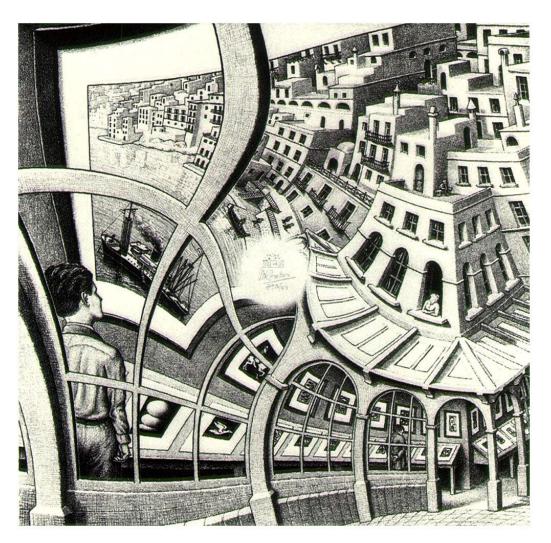
- Las propuestas de Post, Church y Turing: la tesis de Church-Turing.
- Máquinas de Turing. La máquina de Turing universal.
- Otros paradigmas de computación.
- ¿Existen problemas "no computables"?: el problema de la parada de la máquina de Turing y la función Sigma.

¿Qué es computar? (2)

Conferencias sobre computación, R.P. Feynman

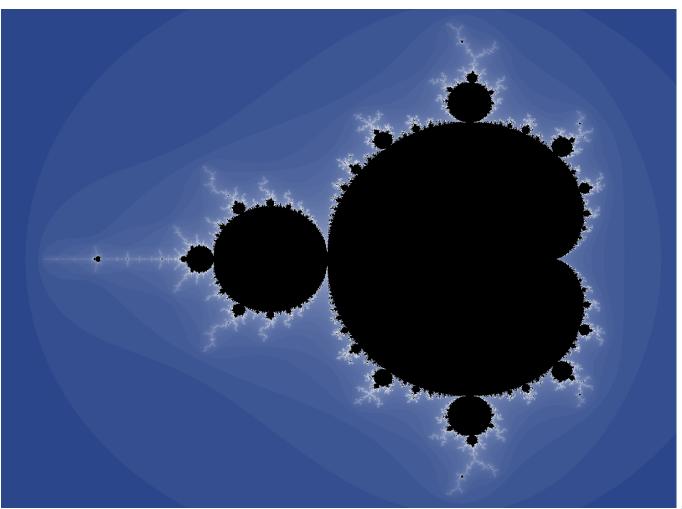

¿Qué es verdad?

- Introducción histórica
- Forma y significado. Concepto de teorema y demostración.
- ¿Se puede capturar el concepto de "verdad matemática" en un sistema formal? El teorema de Gödel.


¿Qué es verdad? (2)

Gödel, Escher Bach, Douglas R. Hofstadter.

¿Qué es verdad? (3)



¿Qué es tratable computacionalmente?

- Máquinas de Turing no deterministas.
- Algoritmos P y NP.
- El problema de la satisfacibilidad.
- NP-Completitud: el teorema de Cook
- Algoritmos aproximados para problemas NP-Completos.

Teoría del caos

Teoría del caos (2)

- Lorenz: Funciones no lineales y caos.
- Atractores y fronteras.
- El conjunto de Mandelbrot.
- Fractales.

Más allá de Turing: Computación Cuántica

- Bits y Qbits.
- Computación cuántica: fundamentos.
- El algoritmo de Shor para la factorización en números primos.
- Criptografía cuántica y teleportación.

Bibliografía

- "Gödel, Escher, Bach...", D.R. Hofstadter.
- "The Turing Omnibus", A.K. Dewdney.
- "Conferencias sobre computación", R.P.
 Feynman
- "Explorations in Quantum Computing", C.P.Williams (2nd edition)
- "The beauty of fractals", Heinz-Otto Peitgen

Evaluación de la asignatura

- La asignatura está diseñada para aprobarse mediante "evaluación continua", para lo cual es condición necesaria:
 - haber asistido al 85% de las horas de clase, y además en los casos de falta a clase realizar un ejercicio extenso (20 min. aprox.) sobre el tema al que se ha faltado,
 - realizar dos trabajos, que pueden ser la elaboración de un tema y su presentación en clase; la elaboración de un ensayo; o una práctica con ordenador.
 - hacer la lectura semanal obligatoria,
 - realizar correctamente los ejercicios breves que se propongan durante la clase, o los de recuperación, o el examen final, en su caso,
 - participar activamente en las clases.

