
 

Interview with Alyssa Rosenzweig conducted by the Polytechnic Library of the 
UAM 

1. You started working on free software projects at a very young age. What 
attracted you to that world, and what was it like finding your place in a 
technical community as a teenager? 

I grew up in front of a text editor and a C compiler. Programming was my hobby 
from my earliest years of primary school until it became my job in university. 

My teenage years added social and political dimensions to my beloved craft. In 
school, I learned about famous activists for social progress: Dr. King, Gandhi, 
Cesar Chavez, and so on. At home, I identified these figures with heroes in the free 
software movement. I was already putting my code on GitHub under a permissive 
license; it was a small leap to understand that code as a vehicle for social 
progress. 

As an adolescent with ample free time and the zeal of the newly converted, I 
dedicated myself to the advancement of the cause. I believed that, whatever the 
technical question, the answer was software freedom. That belief drove me to 
advocate in prose and in person, emulating the techniques I studied in school, 
while building free software replacements for the proprietary software around me. 
My early projects shared that common thread: 

My classes required proprietary learning management systems to access course 
materials and check grades? I didn’t want to run the proprietary JavaScript 
anymore, so I reverse-engineered the REST APIs, wrote my own clients, and 
adapted an open source project (Canvas) for the user interface. 

My friends wanted to chat on Discord, a proprietary messaging platform? I 
contributed to the open source client purple-discord. 

My new laptop had an Arm Mali GPU requiring proprietary graphics drivers? Well, 
we know how to handle that. 

An adult in the community once told me that reverse engineering a GPU was too 
challenging for anyone but an expert. With all the hubris of a 15-year-old, I ignored 
his advice and did it anyway. 

The technical skills of a seasoned adult with the posture and boundless energy of a 
teenager: a terrifying combination for proprietary software. 

No meritocracy exists, but technical communities online get closer than any 
company or academic institution. In some ways I acted my age, but people 
respected my code and treated me as a peer. In a real sense, I grew up in the free 



software community. Now we have come full circle: I regularly receive email from 
students asking advice. I do my best to respond, because I can’t pay back the 
people who supported me throughout my journey, but I can pay it forward for the 
next generation. 

2. For those who might not be familiar with it, how would you explain what 
Asahi Linux is and why it’s such an important project? 

Asahi Linux is a project to run Linux (and other open source operating systems) 
bare metal on Apple Silicon Macs. Prior to 2020, Macs used Intel chips, so Intel’s 
open source contributions enabled Linux on Macs (with some rough edges). Since 
2020, new Macs replace the Intel processor with Apple’s own in-house designs, 
beginning with the Apple M1. Unlike Intel, Apple neither releases documentation 
for its chips nor contributes open source software for the chips. If you don’t want 
macOS, you’re out of luck. 

Software freedom is strongest when users can run whatever software they want on 
whatever hardware they want. The switch to Apple Silicon threatened to “lose” 
Macs forever in the non-macOS world. Asahi Linux enables Linux as an option for 
Mac users and Macs as an option for Linux users. Although I may not recommend 
Macs, it is important that the option exists. 

3. Much of your work has focused on running Linux on Mac devices. Why 
did you decide to start this process on Macs, such a closed and 
proprietary system? 

Precisely because they are closed and proprietary systems. Through reverse 
engineering, we turn closed systems into de facto open ones. Armed with the 
knowledge we gain from reverse engineering, we may write our own drivers for the 
hardware, turning proprietary systems into open source ones respecting software 
freedom. 

There is comfort working on open systems, tending to flowers along a well-trodden 
trail. But first, someone needs to blaze that trail, hacking through weeds and 
planting seeds that may take years to bloom. In my life, I find there are many 
valuable projects I could work on and causes I could advocate for, but the highest 
return-on-investment comes from performing the tasks that nobody else will. 

In 2018, the closed nature of Arm’s Mali GPUs and its proprietary drivers 
threatened the frontier of software freedom. Nobody else was coming to save that, 
so despite my age, I drew some triangles. 

In 2020, the release of the Apple M1 as a general-purpose computing platform with 
a closed in-house GPU again threatened the open ecosystem our community has 



built. With my Mali experience, I was equipped for the challenge. So I got to work – 
because who else would? 

 

 

4. Do you think free technologies could someday become the main 
solution for our devices? How do you think that could be achieved? 

My views on software freedom have evolved over time. The world has changed and 
so have I. When the free software movement started in the 80s, proprietary 
licenses were the problem and writing free replacements the solution. Modern 
concerns are more complex: surveillance capitalism, centralized social media, 
and so on. In a world where proprietary software from the 80s respects its users 
more than some open source programs today, writing code is not enough. The 
irony of “open source” winning and “free software” losing is that open source 
software runs the entire world today, yet digital rights continue to backslide. 
Nevertheless, the decentralized user-centric nature of free software facilitates 
grassroots resistance to any digital threat. It is a tool in the modern activist’s 
toolbox, alongside traditional techniques like labour organizing and letter-writing 
campaigns. On its own, free software will not save us, but we cannot succeed 
without it. 

5. In one of your posts, you wrote: “In 3D graphics, once you can draw a 
triangle, you can do anything.” Could you tell us a bit more about that? 
Could you also explain, in simple terms, how graphics work? 

The goal of computer graphics is to transform a scene into image, consisting of 
millions of pixels with particular colours. How? 

One idea is to model the physical world, applying the laws of physics to simulate 
rays of light. We describe the scene mathematically, modelling it as primitive 
shapes like spheres and boxes, plus light sources like the sun. We then trace 
individual rays of light from each light as they bounce off reflective surfaces like 
water and eventually hit the viewers’ eye. As the ray bounces, we calculate its 
colour based on the materials of each object it hits, and whatever colour it has in 
the viewer’s eye is the colour of the corresponding pixel in the image. 

While this is how light behaves in the real world, it’s inefficient in software since 
most of those light rays never reach the viewer. Tracing rays from the viewer 
backwards to the light source is faster. This algorithm is known as ray tracing, and 
its spectacular results have powered 3D animated films for years. Unfortunately, 
until recently ray tracing was still too slow for real time. 

We need a new approach: rasterization. 



Rather than calculate where rays of light intersect objects in a scene, we instead 
calculate where each object ends up in the scene and draw that directly. To pick 
which colours to use, we will take inspiration from the physical laws and attempt 
to approximate the behaviour of light. To simulate reflections, we might draw each 
object a second time and its reflected location. In rasterization, we’re not 
physicists, we’re painters. The goal is to simply draw something that looks good, 
and draw it fast. 

Rasterization’s efficiency makes it the traditional technique of choice for real-time 
rendering, aided by dedicated rasterization silicon: the GPU. The goal of GPU 
drivers is producing the necessary incantations to drive that hardware. 

Hardware needs to be simple, as it is limited by the number of transistors on the 
chip. Rather than rasterize complex shapes, we break objects into simple shapes 
implemented by the hardware. The simplest approach is breaking everything into 
triangles, because anything can be described with triangles. A rectangle is two 
right triangles split along the diagonal. A cube is twelve triangles: two for each of 
the six faces. Complex shapes like trees and people are approximated by 
thousands of triangles. Curves theoretically require infinitely many triangles, but 
we approximate with just enough that the viewer won’t notice. 

Putting it together, a 3D video game will produce many thousands of triangles each 
frame, for the hardware to rasterize and display. Our job writing a driver is to 
facilitate communication between the video game and the hardware. And once we 
can draw a triangle, we can draw anything. 

6. What does your reverse engineering process look like? 

Reverse engineering is science, the pursuit of knowledge via the scientific method. 
Writing drivers is engineering, applying the knowledge from science to solve 
problems. 

How do I reverse engineer? The same way any scientist works: forming 
hypotheses, collecting data, and revising those hypotheses. 

Usually, we have a proprietary driver for the hardware we are reversing. We treat 
that driver together with the hardware as a black box that we cannot directly 
inspect, just as the world itself is a black box in physical science. Instead, we 
perform experiments to infer how the black box works. What does that look like 
concretely? 

Graphics drivers sit between graphics applications and the hardware. We first need 
a tool to intercept the communications between the graphics driver and the 
hardware. This tool will inject itself between the driver and the hardware, 
inspecting the giant array of bytes the driver prepares for the hardware. Due to 



software and hardware differences, we need to build this tool ourselves for each 
new reversing project, but the general idea stays the same. 

Our goal is to decode the meaning of that pile of bytes, to eventually build our own 
software that produces an equivalent pile on its own. This tool is our lab 
instrument collecting data. What we need next is an experiment. 

The proprietary graphics driver should work with any graphics application, so it’s 
time to write some graphic software. We start by running a simple program our 
tool, recording what the proprietary driver sent the hardware. Next we make a 
small change to the program, run it again, and compare the data. If we are lucky, 
there will be a single small change in the output of the driver: we have found the 
hardware bit corresponding to the graphics state we modified. Success. 

“All” that’s left is repeating that process thousands of times until we have figured 
out most of the bits. 

Most. Our model of the hardware will never be perfect. Without documentation 
from the vendor, there will always be unknown dark corners. But knowledge in 
science does not need to be perfect to be useful to engineering. There are 
unsolved problems in physics, gaps in our understanding of the physical world, but 
we build trains and planes anyway. And there are unsolved mysteries in the Apple 
M1, but I wrote a graphics driver for it anyway. 

7. Beyond the projects you’ve already developed, are there any others 
you’d like to work on in the future? 

Who knows? I choose projects that solve problems faced in our community. As 
new problems appear, new opportunities for projects follow. Before the Apple M1, 
there was no Asahi Linux. Despite regularly giving technical talks with a cape, witch 
hat, and magic wand, I have no special talent for prophecy. We’ll have to learn 
what the future holds the old-fashioned way. 

8. Is there anyone —inside or outside the tech world— who has 
particularly inspired you? What advice would you give to someone who 
wants to start contributing to free technologies? Where should they 
begin? 

So many people have inspired me. How could I hope to list them all here? 

Inside tech, earlier reverse engineers paved the way for me to emulate their craft. 
Take Rob Clark, who kicked off the reverse-engineering of Qualcomm’s Adreno 
GPU. Thanks to his efforts reversing the hardware and building the free software 
“Freedreno” driver, we now have mature free software support for Adreno shipped 
in products by Google and Valve. As for Rob, he never quit, and he is now employed 
by Qualcomm to continue his work from the inside. That’s a success: he freed 



Adreno, changed the course of the industry, and built a great driver. Without 
fanfare he puts in the work, day in and day out, to make the world a little better, and 
the payoff is better than anyone imagined. When I got my first Mali device, I did my 
best to follow Rob’s footsteps. It worked: there has not been reverse engineering of 
Arm’s Mali in years, because there is now a team at Arm finishing the driver I 
started. Both Qualcomm and Arm turned the page on open source graphics, and it 
would not have happened without Rob. 

Beyond reverse engineering, many in the free software graphics community have 
inspired me to grow as a driver developer and compiler author. Faith Ekstrand, 
Connor Abbott, Daniel Schürmann, Kenneth Graunke – these people have taught 
me more about how to build graphics drivers than any class could. 

Beyond tech, many social activists inspire me, both for what they stand for and for 
their foundational belief that progress is possible and within reach if we work 
together. That includes the stories from history textbooks, but it doesn’t stop there. 
You don’t have to be a household name to make a difference locally. Far from tech, 
far from the limelight, and far from the past, I have close friends organizing for 
transgender rights in the US south, in an era when those rights are under attack. 
And it’s working. Huntsville, Alabama is a little bit safer thanks to their tireless 
work. If they can turn hearts, correct narratives, and defeat unjust bills in their 
sphere, I can do the same in mine. 

Whether it’s graphics drivers or human rights, the idea is the same: work together, 
work on what nobody else will, and work to make your local slice of the world a 
little better. 

Positive change often has a domino effect. Rob didn’t know in 2012 his project 
would lead to mine, I didn’t know in 2018 that my project would lead Arm to 
support free graphics drivers, and nobody knows what Arm’s pivot might mean 
down the line. We can’t outsmart or outwit the monoliths, but we can stay nimble 
and improve what we can, where we can, and share a drink when the chips fall into 
place. 

Nobody can single-handedly make change, and there is more injustice in the world 
than there is time in any single person’s day. Your challenge – should you choose to 
accept it – is to find your niche, find some time, and find some friends. If you make 
a small difference, that is enough. You will have succeeded. 

 


