Acceder al contenido principalAcceder al menú principal'>Formulario de contacto'>La UAM

Facultad de CienciasFacultad de Ciencias

Phosphonate monolayers on III-V semiconductor and Ga-nanoparticles for surface enhanced spectroscopy

Organiza
Dpto. de Física Aplicada
Ponente
Dr. Mario Bomers IES, Université de Montpellier, CNRS, Montpellier, France
Fecha
27-02-2018
Hora
12:00
Lugar
Sala de Seminarios, Dep. de Física Aplicada (Mód. 12, 6ª planta) Facultad de Ciencias
Descripción

In the recent years researchers worldwide explore alternative plasmonic material systems to go beyond gold and silver [1]. Highly doped semiconductor, e.g. Si-doped InAs, allows to exploit plasmonic resonances in the infrared. This III-V material platform, integrable with Si-photonics, allows to fabricate infrared plasmonic resonator for surface-enhanced infrared absorbtion (SEIRA) spectroscopy [2]. We could show in a recent work that phosphonic acid chemistry allows to form self-assembled monolayer (SAM) on III-V plasmonic resonators [3]. The organic-inorganic bounding which leads to the SAM is based on metal-oxide phosphonate bonding [4]. Surface enhanced Raman spectroscopy (SERS) with Ga-nanoparticles has been demonstrated [5]. Few nanometers of Gallium oxide covering these particles [6] allowing to explore phosphonic acid chemistry on Ga-nanoparticles for molecular sensing systems. We used the same molecule and the same protocol than for III-V semiconductor surfaces (mid-IR plasmonics) in the case of Ga-nanoparticles surfaces (UV/vis plasmonics). We made a comparative study between these to system notably for surface-enhanced spectroscopy, in particular, a SERS/SEIRA comparison.

References

[1]          G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater., vol. 25, no. 24, pp. 3264–3294, Jun. 2013.

[2]          F. B. Barho et al., “Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin,” Nanophotonics, vol. 7, no. 2, Dec. 2017.

[3]          M. Bomers et al., “Phosphonate monolayers on InAsSb:Si and GaSb surfaces for mid-IR plasmonics,” Appl. Surf. Sci.(submitted)

[4]          S. P. Pujari, L. Scheres, A. T. M. Marcelis, and H. Zuilhof, “Covalent Surface Modification of Oxide Surfaces,” Angew. Chem. Int. Ed., vol. 53, no. 25, pp. 6322–6356, Jun. 2014.

[5]          Y. Yang, J. M. Callahan, T.-H. Kim, A. S. Brown, and H. O. Everitt, “Ultraviolet Nanoplasmonics: A Demonstration of Surface-Enhanced Raman Spectroscopy, Fluorescence, and Photodegradation Using Gallium Nanoparticles,” Nano Lett., vol. 13, no. 6, pp. 2837–2841, Jun. 2013.

[6]          S. Catalán-Gómez et al., “The role of the oxide shell in the chemical functionalization of plasmonic gallium nanoparticles,” 2017, p. 102310D.

Universidad Autónoma de Madrid © 2008 · Ciudad Universitaria de Cantoblanco · 28049 Madrid · Información y Conserjería: 91 497 43 31 E-mail:  informacion.ciencias@uam.es
Gestión de estudiantes de Grado y Posgrado: 91 497 8264 / 4329 / 4353 / 4349 / 6879 / 8362 E-mail:  administracion.ciencias@uam.es