Acceder al contenido principalAcceder al menú principalFormulario de contactoLa UAM

Facultad de CienciasFacultad de Ciencias

Los estudios de Sunghun Park y Víctor Barrena, investigadores de la UAM, revelan un nuevo comportamiento físico que podría revolucionar la computación cuántica

24/09/2021

Lanzar una piedra en un estanque genera ondas circulares y girar un palo conduce a remolinos. Estos dos tipos de efectos —olas y remolinos— se combinan para explicar el comportamiento de líquidos en movimiento. Por ejemplo, cuando una ola golpea una roca, deja remolinos detrás de la roca. La perturbación de un fluido cuántico, como el que se forma en un superconductor, produce efectos similares: las impurezas crean ondas de densidad y las corrientes circulares crean remolinos (vórtices).

Los superconductores en el mundo real, como los que se utilizan cuando se compone una imagen de resonancia magnética, o cuando se realiza un cálculo en una computadora cuántica, sufren ambos tipos de perturbaciones. Sin embargo, resulta todavía un misterio cómo combinar estos dos efectos en un superconductor y cuáles son las consecuencias de tal combinación.

Un trabajo reciente liderado desde la Universidad Autónoma de Madrid (UAM) en España, en la que participan investigadores españoles y alemanes, combinó estos dos efectos por primera vez, revelando un nuevo comportamiento que podría usarse para mejorar la computación cuántica.

En concreto, los resultados obtenidos por el equipo que incluye, entre otros, a Sunghun Park y Víctor Barrena, ambos de la UAM, demuestran que las impurezas magnéticas mezclan diferentes niveles cuánticos dentro de los vórtices.

“Diferentes niveles cuánticos albergan estados con diferentes distribuciones de densidad espacial. La combinación de niveles de impurezas y del vórtice produce un cambio en la posición de los niveles cuánticos en el núcleo del vórtice, que sobrevive incluso cuando la diferencia en energía entre los niveles cuánticos es inferior a la energía térmica”, explican los autores del estudio.

Por lo general, los electrones aparecen como partículas aisladas. Pero en un superconductor se unen en pares llamados ‘pares de Cooper’. Estos pares forman un fluido cuántico capaz de transportar grandes corrientes eléctricas y son la base de los ordenadores cuánticos actuales.

Los pares de Cooper se destruyen al introducir una impureza magnética, que crea ondas de densidad electrónica, o al aplicar un campo magnético, que crea corrientes circulares. La consecuencia de estas perturbaciones es la aparición de cuasipartículas, que son combinaciones de un electrón cuya energía está por encima de cierto umbral (llamado energía de Fermi) y su antipartícula, que en un superconductor se llama hueco y cuya energía está por debajo de dicho umbral.

Estas cuasipartículas tienen algunas propiedades cuánticas interesantes. En particular, su energía está cuantizada y tienen una energía cinética mínima, llamada energía de punto cero, que depende de la masa y la velocidad de las partículas y se debe al movimiento en reposo del principio de incertidumbre de Heisenberg.

 

Más información y fuente:

 Noticias de la Ciencia y la Tecnología (Amazings® / NCYT®)

Universidad Autónoma de Madrid © 2008 · Ciudad Universitaria de Cantoblanco · 28049 Madrid · Información y Conserjería: 91 497 43 31 E-mail:  informacion.ciencias@uam.es

Gestión de estudiantes de Grado y Posgrado: 91 497 8264 / 4329 / 4353 / 4349 / 6879 / 8362 E-mail:  administracion.ciencias@uam.es